Контрольная работа: Математические вычисления
Решение
Пусть
P(A) – вероятность попадания 3 раза,
P(B) – вероятность попадания в 1-й раз,
P(C) – вероятность попадания во 2-й раз,
P(D) – вероятность попадания в 3-й раз.
Тогда
P(B)=0,8
P(C)= P(B)-0,1=0,8-0,1=0,7
P(D)= P(C)-0,1=0,7-0,1=0,6
P(A)=P(B) ∙P(C) ∙P(D)=0,8∙0,7∙0,6=0,336
17. Задача 17
Вычисление вероятности повторных независимых испытаний
Определить вероятность того, что в семье, имеющей 5 детей, будет не более трех девочек. Вероятность рождения мальчиков и девочек считаем одинаковой.
Решение
Используем формулу Я. Бернулли:
1. Определяем исходные данные для формулы Бернулли:
n=5, k=3, p=0,5, q=1-0,5=0,5
2. Вычисление вероятности искомого события:
18. Задача 18
Найти законы распределения случайных величин и , если законы распределения случайных величин и имеют вид
0 | 2 | 4 | 6 | |
0,1 | 0,2 | 0,3 | 0,4 |
3 | 5 | 7 | 9 | |
0,3 | 0,2 | 0,2 | 0,3 |
Решение
Вычисления производим в табличной форме на основании определения разности и произведения случайных величин.
1. Вычисляем промежуточные величины для вычисления распределения переменной величины Z=Х-Y (разности двух случайных величин), используя табл.2.
Таблица 2.
3 | 5 | 7 | 9 | ||
0.3 | 0.2 | 0.2 | 0.3 | ||
0 | 0.1 | -30.03 | -5 0.02 | -70.02 | -9 0.03 |
2 | 0.2 | -1 0.06 | -3 0.04 | -5 0.04 | -7 0.06 |
4 | 0.3 | 1 0.09 | -1 0.06 | -3 0.06 | -5 0.09 |
6 | 0.4 | 3 0.12 | 1 0.08 | -1 0.08 | -3 0.12 |