Контрольная работа: Методика обработки экспериментальных данных 2

где h – шаг (разность между двумя соседними вариантами);

(условный момент второго порядка);

(условный момент первого порядка);

(условная варианта).

Расчеты занесем в таблицу 7:


Xi Ni Ui XB M1 M2 s m3 m4 AS EK
-805 1 -2,73 -684,67 0,30 1,06 23,97 3433,28 4193007,72 0,25 12,71
-780,6 1 -2,11
-756,2 4 -1,49
-731,8 7 -0,87
-707,4 26 -0,25
-683 33 0,37
-658,6 14 0,99
-634,2 8 1,61
-609,8 3 2,23
-585,4 3 2,85

Вывод:

Т.к. асимметрия положительна то ‘длинная часть’ кривой распределения расположена справа от математического ожидания или мода.

Т.к. Эксцесс больше нуля, то кривая распределения имеет более высокую и ‘острую’ вершину, чем нормальная кривая.

7. Построение доверительного интервала для математического ожидания и среднего квадратического отклонения

Доверительный интервал для математического ожидания (с вероятностью g) находят как:

(7.1)

где n – объем выборки;

t g – случайная величина имеющее распределение Стьюдента находим по приложению 1.

s – исправленное среднее квадратическое отклонение;

– выборочное среднее;

Найдем интервал:

по приложению 1 находим t g = 1.984 при g = 0.95 и n = 100 ;

=-684,67; s = 38,19 ;

Получаем

-692,25<a<-677.09

Доверительный интервал для среднего квадратического отклонения

(с надежностью g) находят как:

при q <1 (7.2)

при q >1 (7.3)

где q находят по приложению 2, по заданным n и g ;

Исходя из приложения 2, n = 100 и g = 0.95 находим q =0.143;

Поэтому интервал находим по формуле (7.2):

38.19(1-0.143)<<38.19(1+0.143) 35,58(1+0.143)

32.73 << 43.65

К-во Просмотров: 234
Бесплатно скачать Контрольная работа: Методика обработки экспериментальных данных 2