Контрольная работа: Методы безусловной многомерной оптимизации
Выполнили: студенты IV курса
группы ПИЭ - 061
Тимохова А.В.
Годун И.А.
Руководитель: ассистент
кафедры ИСУ
Щепетов
Алексей
Викторович
Новокузнецк 2009
1 Задача об оптимальном распределении инвестиций
Задача: Распределить Т = 100 ден.ед. по четырем предприятиям с целью получения максимальной суммарной прибыли. Прибыль с предприятий задается таблицей 1.1.
Таблица 1.1
X | g1 | g2 | g3 | g4 |
0 | 0 | 0 | 0 | 0 |
20 | 11 | 24 | 12 | 35 |
40 | 26 | 22 | 28 | 33 |
60 | 31 | 32 | 37 | 36 |
80 | 42 | 41 | 47 | 40 |
100 | 58 | 59 | 53 | 54 |
Процесс оптимизации разобьем на n шагов (в нашей задаче n =4). На k-м шаге будем оптимизировать инвестирование не всех предприятий, а только с k-го по n-е. При этом на них расходуются не все средства, а некоторая меньшая сумма Ck≤Т, которая и будет являться переменной состояния системы. Переменной управления на k-м шаге назовем величину xk средств, вкладываемых в k-ое предприятие. В качестве функции Беллмана Fk(Ck) на k-м шаге в этой задаче можно выбрать максимально возможную прибыль, которую можно получить с предприятий с k-го по n-е при условии, что на их инвестирование осталось Ck средств. Очевидно, что при вложении в k-е предприятие xk средств получим прибыль gk(xk), а система в (k+1)-му шагу перейдет в состояние Ck+1 = Ck – xk, т.е. на инвестирование предприятий с (k+1)-ого до n-го останется Ck+1 средств.
Таким образом, на первом шаге условной оптимизации при k=n функция Беллмана представляет собой прибыль только с n-го предприятия. При этом на его инвестирование может выделяться количество средств Ck, 0≤Ck≤Т. Очевидно, чтобы получить максимум прибыли с этого последнего последнего предприятия, надо вложить в него все эти средства, т.е. Fn(Cn)=gn(Cn) и xn=Cn.
На каждом из последующих шагов для вычисления функции Беллмана следует использовать результаты предыдущего шага. Максимально возможная прибыль, которая может быть получена предприятиями с k-го по n-е, равна:
.
Максимум этого выражения достигается на некотором значении x*k, которое и является оптимальным управлением на k-м шаге для состояния системы Ck. Аналогично можно отыскать функции Беллмана и оптимальные управления вплоть до шага k=1.
Функция Беллмана F1(C1) представляет собой максимально возможную прибыль со всех предприятий (с 1-го по n-е), а значение x*k, на котором достигается максимум прибыли, является оптимальным количеством средств, которые необходимо вложить в 1-е предприятие. Далее, для всех последующих шагов вычисляется величина Ck = Ck-1 – Xk и оптимальным управлением на k-м шаге является то значение Xk, которое доставляет максимум прибыли при соответствующем состоянии системы Ck.
Решение.
Этап I. Условная оптимизация.
Шаг 1. k = 4. Предполагаем, что все средства 100 ден.ед. переданы на инвестирование третьего предприятия. В этом случае максимальная прибыль составит F4(C4) = 54, см. таблицу 1.2.
Таблица 1.2
С4 | x4 | F4(C4) | X*4 | |||||
0 | 20 | 40 | 60 | 80 | 100 | |||
0 | 0 | – | – | – | – | – | 0 | 0 |
20 | – | 35 | – | – | – | – | 35 | 20 |
40 | – | – | 33 | – | – | – | 33 | 40 |
60 | – | – | – | 36 | – | – | 36 | 60 |
80 | – | – | – | – | 40 | – | 40 | 80 |
100 | – | – | – | – | – | 54 | 54 | 100 |
Шаг 2. k = 3. Определяем оптимальную стратегию инвестирования во второе и третье предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:
.
На его основании рассчитываются данные таблицы 1.3.
Таблица 1.3
С3 | x3 | F3(C3) | X*3 | |||||
0 | 20 | 40 | 60 | 80 | 100 | |||
0 | 0 | 0 | 0 | |||||
20 | 35 | 12 | 35 | 0 | ||||
40 | 33 | 47 | 28 | 47 | 20 | |||
60 | 36 | 45 | 63 | 37 | 63 | 40 | ||
80 | 40 | 48 | 61 | 72 | 47 | 72 | 60 | |
100 | 54 | 52 | 64 | 70 | 82 | 53 | 82 | 80 |
Шаг 3. k = 2. Определяем оптимальную стратегию инвестирования в первое и остальные предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:
.
На его основе находятся данные таблицы 1.4.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--