Контрольная работа: Методы решения алгебраических уравнений
Методы решения алгебраических уравнений
1. Одношаговые итерационные модели
Для решения уравнений часто прибегают к итерационным методам, которые иногда называют методами последовательных приближений.
Суть этого класса методов можно раскрыть на примере.
Пусть нам нужно решить уравнение:
(1)
для решения этого уравнения строится соответствующая итерационная формула:
(2)
Задавая начальное приближение корня уравнения (1) в виде:
(3)
находим дальнейшие приближения по формуле (2):
(4), (5), (6)
Мы видим, что каждое вычисленное значение становится исходным для вычисления последующих приближений .
Такие итерационные формулы называются одношаговыми.
Существуют и двухшаговые, трёхшаговые и т.д. итерационные формулы, которые определяются соответственно формулами:
- двухшаговая формула (7)
- трёхшаговые формула (8)
и т.д.
После построения итерационной формулы (2) возникают вопросы:
а) сколько нужно считать последовательных приближений , т.е. когда остановиться?
б) сходится ли последовательность приближений к корню ?
Ответы на эти вопросы нужно давать всегда, когда имеем дело с методом последовательных приближений Пикара. На вопросы отвечают следующим образом:
а) задаётся точность вычислений и итерационный процесс останавливают, как только достигается соответствующая абсолютная погрешность, т.е. как только выполняется условие:
(9)
б) нужно соответствующим образом строить формулы (2), используя соответствующие теоремы о достаточном условии сходимости. В частности теорему Банаха о сжатых отображениях.
Определение: Пусть M- метрическое пространство с метрикой . Оператор A, отображающий это пространство в себя называется сжимающим, если существует такое число , что для любой пары элементов имеет место неравенство:
(10)
Т.о. сжимающий оператор сжимает расстояние между элементами и , т.е. расстояние между образами элементов меньше или равно расстоянию между их прообразами и . Для таких отображений используется теорема Банаха. Теорема Банаха: Пусть A- сжимающий оператор в полном метрическом пространстве M, тогда уравнение
--> ЧИТАТЬ ПОЛНОСТЬЮ <--