Контрольная работа: Методы решения уравнений линейной регрессии
Сравнение показывает:
, следовательно, свободный коэффициент a является значимым.
, значит, коэффициент регрессии b является значимым.
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F–критерия Фишера (), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Коэффициент детерминации R–квадрат определен программой РЕГРЕССИЯ и составляет .
Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.
Проверим значимость полученного уравнения с помощью F–критерия Фишера.
F–статистика определена программой РЕГРЕССИЯ (таблица 2) и составляет .
Критическое значение найдено для уровня значимости
и чисел степеней свободы
,
.
Схема критерия:
Сравнение показывает: ; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.
Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле
с помощью функции ABS (таблица 5).
ВЫВОД ОСТАТКА | |||
Наблюдение | Предсказанное Y | Остатки | Отн. Погр-ти |
1 | 27,14150943 | 6,858490566 | 20,17% |
2 | 29,30660377 | -3,306603774 | 12,72% |
3 | 30,02830189 | -6,028301887 | 25,12% |
4 | 35,08018868 | 2,919811321 | 7,68% |
5 | 35,80188679 | -0,801886792 | 2,29% |
6 | 40,13207547 | -0,132075472 | 0,33% |
7 | 45,90566038 | -3,905660377 | 9,30% |
8 | 45,90566038 | 5,094339623 | 9,99% |
9 | 46,62735849 | -1,627358491 | 3,62% |
10 | 48,07075472 | 0,929245283 | 1,90% |
По столбцу относительных погрешностей найдем среднее значение (функция СРЗНАЧ).
Схема проверки:
Сравним: 9,31% < 15%, следовательно, модель является точной.
Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости , если прогнозное значение фактора X составит 80% от его максимального значения.
Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно, . Рассчитаем по уравнению модели прогнозное значение показателя У:
.
Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.
Зададим доверительную вероятность и построим доверительный прогнозный интервал для среднего значения Y.
Для этого нужно рассчитать стандартную ошибку прогнозирования: