Контрольная работа: Моделирование дискретной случайной величины по геометрическому закону распределения

где n – число независимых наблюдений.

l = D\| n =0,04*\/ 300 = 0,693

и по таблице значений вероятности P(l) находим вероятность P(l).

P(l) = 0,711.

Это есть вероятность того, что (если величина х действительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождение между F*(x) и F(x) будет не меньше, чем наблюдаемое.

Нет оснований отвергать гипотезу о том, что наш закон распределения является геометрическим законом распределения.

Воспользуемся критерием Колмогорова. В качестве меры расхождения между теоретическим и статистическим распределениями рассматривается максимальное значение модуля разности между статистической функцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).

D = max | F*(x)- F(x)|

D = 0.04

Далее определяем величину l по формуле:

l = D\| n ,

где n – число независимых наблюдений.

l = D\| n =0,04*\/ 300 = 0,693

и по таблице значений вероятности P(l) находим вероятность P(l).

P(l) = 0,711.

Это есть вероятность того, что (если величина х действительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождение между F*(x) и F(x) будет не меньше, чем наблюдаемое.

Нет оснований отвергать гипотезу о том, что наш закон распределения является геометрическим законом распределения.


Список используемой литературы

1. «Теория вероятностей» В. С. Вентцель.

2. «Теория вероятностей (Задачи и Упражнения)» В.С. Вентцель, Л. А. Овчаров.

3. «Справочник по вероятностным расчётам».

4. «Теория вероятностей и математическая статистика» В.Е.Гмурман.

5. «Руководство к решению задач по теории вероятностей и математической статистике» В. Е. Гмурман.

К-во Просмотров: 286
Бесплатно скачать Контрольная работа: Моделирование дискретной случайной величины по геометрическому закону распределения