Контрольная работа: Моделирование дискретной случайной величины по геометрическому закону распределения
P*[5]=0.02333
P*[6]=0.01667
P*[7]=0.01000
P*[8]=0.01000
P*[9]=0.00333
P*[10]=0.00148
Статистические интервалы:
PS[1]=0.44333
PS[2]=0.65333
PS[3]=0.78000
PS[4]=0.89000
PS[5]=0.93000
PS[6]=0.95333
PS[7]=0.97000
PS[8]=0.98000
PS[9]=0.99000
PS[10]=0.99333
Числовые характеристики:
MX:1.45465
Mx*:1.36478
Dx:3.29584
Dx*:3.20549
G:1.81544
G*:1.79039
Задание №3. Проверка критерием Колмогорова: имеет ли данный массив соответствующий закон распределения
Воспользуемся критерием Колмогорова. В качестве меры расхождения между теоретическим и статистическим распределениями рассматривается максимальное значение модуля разности между статистической функцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).
D = max | F*(x)- F(x)|
D = 0.04
Далее определяем величину l по формуле: