Контрольная работа: Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии
Выполнил:
студент гр. ПВ 09-1з
Измайлов А.О.
Проверила:
Гетьман И.
Краматорск 2010
1. Теоретический вопрос
Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии.
Область прогнозов находится так: среди выборочных х находят xmin и xmax . Отрезок прямой, заключенный между ними называется областью прогнозов.
Прогнозируемый доверительный интервал для любого х такой .
Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке .
Прогноз для произвольного х дает интервал, в который с вероятностью g попадает неизвестное . Т.е. прогноз при заданном х составит от до с гарантией .
Максимальная ошибка прогноза.
Выборочные значения yi равны , где коэффициенты регрессии для всей генеральной совокупности, - случайная величина, значение которой мы определить не можем, так как не знаем .
Для неизвестных коэффициентов могут быть найдены доверительные интервалы, в которые с надежностью g попадают : , .
Геометрический смысл коэффициента - ордината пересечения прямой регрессии с осью 0Y, коэффициента - угловой коэффициент прямой регрессии. Вследствие этого возникает следующая ситуация:
Истинная прямая регрессии может с вероятностью g занимать любое положение в доверительной области.
Наиболее максимальное отклонение от расчетного значения - или . Найдем ошибку прогноза для каждого из значений:
, .
Т.е. максимальная ошибка прогноза в процентах составляет: , т.е. чем больше полуширина доверительного интервала, тем больше ошибка. Ширина доверительного интервала возрастает с ростом коэффициента доверия и уменьшается с ростом объема выборки со скоростью . Т.е. увеличив объем выборки в 4 раза, в 2 раза сузим доверительный интервал, т.е. в 2 раза уменьшим ошибку прогноза. С уменьшением коэффициента доверия уменьшается ошибка прогноза, но растет вероятность того, что истинное значение не попадет в доверительный интервал.
Прогноз на основании линейной модели для двуфакторной модели.
Целью регрессионного анализа является получение прогноза с доверительным интервалом. Прогноз делается по уравнению регрессии
(1)
Точка прогноза из p -мерного пространства с координатами выбирается из области прогноза. Если, например, модель двухфакторная , то область прогноза определяется прямоугольником, представленным на рис. 1.
Рис. 1
Т.е. область прогноза определяется системой неравенств:
Чтобы получить формулу для вычисления полуширины d доверительного интервала, нужно перейти к матричной форме записи уравнения регрессии.
Матричная запись многофакторной регрессии
Данные для построения уравнения регрессии, сведем в таблицу:
Таблица 1
№ набл | Y | X1 | X2 | … | Xp |
1 | y1 | x11 | x12 | x1p | |
2 | y2 | x21 | x22 | x2p | |
… | |||||
n | yn | xn1 | xn2 | xnp |
--> ЧИТАТЬ ПОЛНОСТЬЮ <--