Контрольная работа: Общий курс высшей математики
Для вычисления этих пределов используем те же приемы, что и выше, учитывая только на сей раз вместо равенства (1) равенство (2). Теперь, в частности, для отрицательных значений аргумента имеем:
==-=- и следовательно, k1 = 0, b1 = -3, то есть наклонной (горизонтальной) асимптотой при х→-∞ на сей раз является прямая у = -3
4. Найдем точки пересечения графика данной функции с осями координат и установим участки ее знакопостоянства.
Для отыскания абсцисс точек пересечения графика с осью ОХ решим уравнение =0
Его единственным решением, очевидно, является х = Причем, в силу положительности знаменателя при любом х ясно, что f(x)>0 при х>f(x)<0при х <
Таким образом, точка А (; 0) является единственной точкой пересечения графика функции с осью ОХ, а для х из интервалов (-∞; ) и (; +∞) соответствующие точки графика функции расположены, соответственно, ниже и выше оси абсцисс.
Точка пересечения графика функции у = f (x) с осью ОУ – это всегда точка (0; f(0)), если только нуль входит в область определения функции. В нашем случае: f (0) ===-=-2,24 такой точкой является В(0;-2,24).
5. Приступим теперь к отысканию точек экстремума данной функции и участков ее монотонности.
Вычислим сначала ее производную:
у===
====
Решая уравнение у/ = 0, получим единственный корень производной:
5(3+х) = 0 х=-3
Таким образом, необходимое условие экстремума выполняется лишь в точке х = -3. Эта точка разбивает ось абсцисс на два интервала (-∞;-3) и (-3; +∞) знакопостоянства производной.
Для определения знака производной в каждом интервале (пользуясь ее непрерывностью) определим знак производной в одной какой-либо точке каждого интервала. Так как
f/ (-1) = < 0 и f/ (2) = = >0
то заключаем, что функция убывает на интервале (-∞;-3) и возрастает на интервале (-3; +∞), и значит точка х = -3 является точкой минимума данной функции.
Значение функции в этой точке (то есть минимум функции) равно
f (-3) = ==-=-3,74
С (-3;-3,74)
6. Наконец, обратимся к исследованию данной функции на выпуклость, вогнутость и существование точек перегиба.
С этой целью найдем производную второго порядка данной функции:
у=(у)// ===
= =
===
Решим затем уравнение у// = 0, эквивалентное квадратному уравнению: