Контрольная работа: Решение практических заданий по дискретной математике

Так как все импликанты участвовали в склеивании, и сокращенная ДНФ состоит из одной простой импликанты, то строить таблицу покрытий нет необходимости, т.е.

.


Задание 6

Для неориентированного графа , у которого ,

а) вычислить числа ;

б) определить хроматическое число .

Решение:

Построим граф:

а) Вычислим числа .

1) :

Используя алгоритм выделения пустых подграфов, построим дерево:

Согласно определению :


.

2) :

Используя алгоритм выделения полных подграфов, построим дерево:

Здесь - полные подграфы. Видно, что мощность носителей всех подграфов равна трем, т.е.

.

3) :


Построим модифицированную матрицу смежности заданного графа G :

1 2 3 4 5 6

.

Находим минимальное число строк, покрывающих все столбцы модифи-цированной матрицы . Таких строк – одна. Следовательно,

.

б) Определим хроматическое число .

К-во Просмотров: 570
Бесплатно скачать Контрольная работа: Решение практических заданий по дискретной математике