Контрольная работа: Решение практических заданий по дискретной математике
Так как любая пара элементов имеет единственную наибольшую нижнюю грань и единственную наименьшую верхнюю грань, то заданное частично упорядоченное множество М является решеткой.
Решетка М является дедекиндовой, когда выполняется равенство:
для таких , что .
Решетка М не является дедекиндовой, т.к. указанное равенство не вы-полняется, например, для элементов 2, 3, 4:
Одним из условий дистрибутивности решетки является ее дедекиндо-вость. Так как решетка М не является дедекиндовой, то она не является дистрибутивной решеткой.
Задание 4
Является ли полной система булевых функций ? Если система функций полная ,то выписать все возможные базисы.
Решение:
Рассмотрим функцию .
1. Принадлежность функции к классу :
.
Следовательно, .
2. Принадлежность функции к классу :
.
Следовательно, .
3. Принадлежность функции к классу .
Предположим, что функция линейная и, следовательно, представима в виде полинома Жегалкина первой степени:
.
Найдем коэффициенты .
Фиксируем набор 000:
,
,
Следовательно, .
Фиксируем набор 100:
,
,