Контрольная работа: Решения неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами. Комплексные числа
2) у(_) =? у(_) = Ае5х y(_)′ = 5А5х
у″ = 25Ае5х
25Ае5х - 20Ае5х + 4А5х = 2е5х
9А5х = 2е5х
А = 2/9 у(_) = 2/9е5х
у = C1 e2 x + С2 е2х ∙ х + 2/9е5х - общее решение н. д. у.
Найдем частное решение при условии:
у (0) = 1 у′ (0) = 0
у′ = 2C1 e2 x + 2С2 е2х ∙ х + 10/9е5х
1 = C1 + С2 + 2/9C1 + С2 = 7/9
0 = 2C1 + 2С2 + 10/92C1 + 2С2 = 10/9
C1 + С2 = 1/3
C1 + 1/3 = 7/9
С1 = 4/9 С2 = 1/3
у = 4/9e2 x + 1/3е2х ∙ х + 2/9е5х - частное решение при заданных условиях.
Комплексные числа
Ö - 1 = i- мнимое число
(Ö - 1) 2 = i2 i2 = - 1
i3 = i2 ∙ i = - 1 ∙ i= - i
i4 = i2 ∙ i2 = ( - 1) ∙ ( - 1) = 1
а + вi - комплексные числа, где: а, в - действительные числа или а, в є R
Геометрический смысл комплексного числа:
в
. (а; в)
ρ в ρ = Ö а 2 + в 2 = çа + вiú
) d а
а d = arctg в/а –
аргумент комплексного числа
(находится с учетом четверти)
tg
нет
d | 0 0 | П/6 | П/4 | П/3 | П/2 |
tg | 0 | Ö 3/ 3 | 1 | Ö 3 | --- |
- +
0 0
+ -
нет
cosd = a / ρ a = ρcosd
sind = в / ρ в = ρsind
а + вi = ρcosd + i ρsind
а + вi = ρ (cosd + i sind) –
комплексное число в тригонометрической форме
Действия с комплексными числами:
Сложение: