Контрольная работа: Решения неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами. Комплексные числа

Умножение:

1 + в1 i) (а2 + в2 i) = а1 а2 1 в2 i2 + а1 в2 i

а1 а2 - в1 в2 + (в1 а2 + а2 в2 ) i

Формула Эйлера: Комплексное число в показательной форме:

е i у = cosу + isinу z = ρе i φ

Примеры по возведению комплексного числа в степень в тригонометрической и показательной формах:

1) ( 7 + 3i) (3 + 7i) = 21 + 21i 2 + 9i + 49i = 58i

(7 + 3i) = Ö 58 (cosarctg 3/ 7 + isinarctg 3/ 7) = е ln Ö 58 × е arctg 3/7 = е ln Ö 58 + i arctg 3/7

ρ1 = Ö 58

φ1 = arctg 3/ 7

(3 + 7i) = Ö 58 (cosarctg 7/ 3 + isinarctg 7/ 3) = е ln Ö 58 × е arctg 7/ 3 = е ln Ö 58 + i arctg 7/ 3

ρ2 = Ö 58

φ2 = arctg 7/ 3

Ö 58 (cosarctg 3/ 7 + isinarctg 3/ 7) Ö 58 (cosarctg 7/ 3 + isinarctg 7/ 3) =

= 58 (cos (arctg 3/ 7 + arctg 7/ 3) + i (sin (arctg 3/ 7 + arctg 7/ 3))) =

= е ln 58 × е i (arctg 3/ 7 + arctg 7/ 3) = е ln 58 + i (arctg 3/ 7 + arctg 7/ 3)

При решении примера использовали формулу:

ρ1 (cosφ1 + isinφ1 ) ρ2 (cosφ2 + isinφ2 ) = ρ1 ρ2 (cos (φ1 + φ2 ) + i (sin (φ1 2 ))

Проверка:

е ln 58 + i (arctg 3/ 7 + arctg 7/ 3) = е ln 58 × е i (arctg 3/ 7 + arctg 7/ 3) =58 (cos (arctg 3/ 7 + arctg 7/ 3) + i (sin (arctg 3/ 7 + arctg 7/ 3)

cos (arctg 3/ 7 + arctg 7/ 3) = cos (arctg 3/ 7) cos (arctg 7/ 3) -

sin (arctg 3/ 7) sin (arctg 7/ 3)

cos (arctg 3/ 7) = 1/ (Ö 1 + tg2 (arctg 3/ 7)) = 1/ Ö 1 + (9/49) = 7/Ö 58

cos (arctg 7/ 3) = 3/Ö 58

sin (arctg 3/ 7) = Ö 1 - cos2 arctg 3/ 7 = Ö 1 - (7/Ö 58) 2 = Ö 9/ 58 = 3/Ö 58 sin (arctg 7/3) = Ö 1 - cos2 arctg 7/ 3 = 7/Ö 58

cos (arctg 3/ 7 - arctg 7/ 3) = 7/Ö 58 × 3/Ö 58 - 3/Ö 58 × 7/Ö 58 = 0

sin (arctg 3/ 7 - arctg 7/ 3) = 3/Ö 58× 3/Ö 58 × 3/Ö 58× 3/Ö 58 = 0

Возведение в степень:

(7 + 3i) (3 + 7i) = Ö 58 (cosarctg 3/7 + isinarctg 3/7) = е ln Ö 58 + i arctg 3/7

К-во Просмотров: 228
Бесплатно скачать Контрольная работа: Решения неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами. Комплексные числа