Контрольная работа: Решения неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами. Комплексные числа
Контрольная работа
по высшей математике
по теме:
Решения неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами. Комплексные числа
Выполнила:
Студентка II курса
Экономического факультета
Очного отделения
2007г
I. у″ - 4y′ + 4y = соs4х
у = U + у(_) - общ. реш. н. д. у.
у″ - 4у′ + 4у = 0
k2 - 4k + 4 = 0
k1; 2 = 2
1) U =?
U = C1 e2 x + С2 е2х ∙ х
2) у(_) =? у(_)= Acos4x + Bsin4xy(_)′ = - 4Asin4x + 4Bcos4x
y″ = - 16Acos4x - 16Bsin4x
16Acos4x - 16Bsin4x + 16Asin4x + 16Bcos4x + 4Acos4x +4Bsin4x =
= cos4x + 0 ∙ sin4x
12Acos4x - 12Bsin4x + 16Asin4x + 16Bcos4x = cos4x + 0 ∙ sin4x
12A + 16A = 016B - 12B = 0
4A = 04B = 0
A = 4 B = 4
y(_) = 4cos4x + 4sin4x
y = C1 e2x + C2 e2x · x + 4cos4x + 4sin4x - общее решение н. д. у.
Найдем частное решение при условии:
у (0) = 1 у′ (0) = 0
у′ = 2С1 e2 x + 2C2 e2 x · x- 16sin4x + 16cos4x
1 = C1 + C2 + 4С1 + С2 = 3 С1 + 13 = 3
0 = 2C1 + 2C2 + 162С1 + 2С2 = 16
С1 + С2 = 13
С1 = - 10С2 = 13
--> ЧИТАТЬ ПОЛНОСТЬЮ <--