Контрольная работа: Сопротивление материалов 2 Методическое указание

- продольная деформация величина безразмерная, иногда выражается в процентах.

Тоже самое можно сказать и о поперечной деформации:

В известных пределах нагружения между упругой продольной деформацией и соответствующим (действующим в её направлении) нормальным напряжением существует прямо пропорциональная (линейная) зависимость:

σ=E*ε , где Е - модуль упругости (модуль Юнга), Па, мПа, физическая постоянная данного материала, характеризующая его жёсткость (табличное значение).

Так как: σ = N/A то получим формулу Гука:

Δl=N·l/(Е·А),

где:Δl - изменение длины всего объекта;

l - первичная длина объекта.

Отсюда: С = Е А/l- жёсткость бруса;

β=l/С = l/(Е . А) - коэффициент податливости.

Следовательно: Δl=N/С

Δl=βN

[ ]—допускаемое значение.


ПРИМЕР РЕШЕНИЯ ЗАДАЧ

Определить размеры поперечного сечения стальной (Е=2,1 1О5 мПа) штанги (длина l= 2,5м) при условии, чтобы её удлинение равнялось [Δl]= 2мм. Чему при этом будут равны напряжения в поперечном сечении штанги?

Решение:

По формуле Гука, учитывая, что продольная сила во всех поперечных сечениях штанги одинакова (N=F), имеем:

Найдем площадь поперечного сечения штанги при Δl=[Δl]=2мм:

А напряжение в поперечном сечении штанги будет равно:

Примечание: изменение площади поперечного сечения ничтожно мало, поэтому при расчетах напряжений всегда оперируют первоначальной площадью поперечного сечения.

РАСЧЁТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)

ОСНОВНЫЕ ПОНЯТИЯ

Условие прочности:

где: n — коэффициент запаса прочности должно соблюдаться для всех точек рассматриваемого элемента конструкции, поэтому под σ следует понимать наибольшее расчетное напряжение.

К-во Просмотров: 397
Бесплатно скачать Контрольная работа: Сопротивление материалов 2 Методическое указание