Контрольная работа: Уравнения, содержащие параметр
Пример 2. Решить уравнение (1).
Допустимыми значениями k и x будут значения, при которых .
Приведём уравнение к простейшему виду:
9х-3k=kx-12
(9 – k)x =3k-12 (2)
Найдём k, при которых изначальное уравнение не имеет смысла:
Подставив в (2) , получим:
.
Если подставим , то получим так же .
Таким образом, при уравнение (1) не имеет числового смысла, т.е. - это недопустимые значения параметра k для (1). При мы можем решать только уравнение (2).
1. Если , то уравнение (2) и вместе с ним уравнение (1) имеют единственное решение , которое будет:
а) положительным, если , при 4<k<9, с учётом : ;
б) нулевым, если ;
в) отрицательным, если и k>9 с учётом
, получаем .
2. Если , то уравнение (2) решений не имеет.
Ответ: а) при и , причём х>0 для ; x=0 при k=4; x<0 при ;
б) при уравнение не имеет решений.
1.2 Решение линейных уравнений с модулем
Для начала, стоит вспомнить, что такое модуль числа. Итак, абсолютной величиной или модулем числа называется само число х, если х положителен, число (-х), если х отрицателен, или нуль, если х=0. Значение модуля может быть только положительным.
Чтобы понять решение параметрических уравнений, содержащих знак модуля, лучше всего продемонстрировать решение наглядно, т.е. привести примеры:
Пример 1. Решить уравнение |x-2|=b.
Так как, по определению модуля, |x-2|, то при b<0 данное уравнение решений не имеет. Если b=0, то уравнение имеет решение х=2.
Если b>0, то решениями уравнения являются числа x=2+b и x=2-b.
Ответ: при b<0 решений нет, при b=0 х=2, при b>0 х=2+b и x=2-b.
Пример 2. Решить уравнение |x-a|=|x-4|. Удобнее всего данное уравнение решить методом интервалов, для двух случаев:
1) a;
2) 4.
1. Первый интервал: