Курсовая работа: Аналіз теорії цифрових автоматів

Аналіз теорії цифрових автоматів

(курсова робота)

Содержание

Двійкова арифметика

Системи числення з довільною основою

Мішані системи числення

Форма з фіксованою крапкою

Форма з плаваючою крапкою

Прямий, зворотній та доповнюючий коди чисел

Поняття про булеві функції

Аналітичне представлення булевих функцій

Мінімізація булевих функцій

Метод квайна-мак-класкі

Висновок

Висновок

Література


Теорія цифрових автоматів закладає теоретичні основи роботи комп’ютерної техніки. У даній курсові роботі проводиться аналіз математичного підгрунтя даної дисципліни.

Двійкова система числення

Двійкова позиційна система числення

Позиційна система числення з основою 2 називається двійковою. Для запису чисел в двійковій системі використовуються лише дві цифри: 0 і 1. Число два, тобто основа системи подається як 102 .

Зручність системи - в її надзвичайній простоті.

Недолік - основа системи мала, тому для запису навіть не дуже великих чисел треба використовувати багато знаків.

Переведення числа з двійкової системи числення в десяткову та з десяткової у двійкову.

Нам уже відомо, що число N, записане в системі числення з основою p як (±ak ak-1 …a1 a0 ) p , рівне N=ak ∙pk +ak-1 ∙pk-1 +…+a1 ∙p+a0

Тому:

10012 =1∙23 +0∙22 +0∙21 +1∙20 =8+0+0+1=910

1000012 =1∙25 +0∙24 +0∙23 +0∙22 +0∙21 +1∙20 =32+0+0+0+0+1=3310

Щоб перевести число із десяткової системи числення у двійкову, треба послідовно ділити десяткове число і його десяткові частки на основу двійкової системи, тобто на число 2. Ділення продовжується до тих пір, поки одержана частка не буде менша основи нової системи числення, тобто 2.


1 |40|2_

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 362
Бесплатно скачать Курсовая работа: Аналіз теорії цифрових автоматів