Курсовая работа: Анализ цепи во временной области различными методами
Результаты вычислений:
Таблица 2.
k, номер гармоники |
Амплитуда k - той гармоники Uок , B | Начальная фаза k - той гармоники ak , рад |
1 | 9.549 | -0.524 |
2 | 4.775 | -2.618 |
3 | 0 | - |
4 | 2.387 | -0.524 |
5 | 1.91 | -2.618 |
6 | 0 | - |
7 | 1.364 | -0.524 |
8 | 1.194 | -2.618 |
9 | 0 | - |
10 | 0.955 | -0.524 |
11 | 0.868 | -2.618 |
12 | 0 | - |
13 | 0.735 | -0.524 |
14 | 0.682 | -2.618 |
Рисунок 5.1 Амплитудный спектр входного сигнала
На рис. 5.1 представлен амплитудный спектр входного сигнала. Огибающая дискретного спектра периодического сигнала совпадает с амплитудно-частотной характеристикой одиночного импульса. При всех частотах амплитуды спектра периодической функции отличаются от значений спектральной плотности непериодической только постоянным множителем . Увеличение периода следования импульсов ведет к уменьшению расстояния между соседними гармониками амплитудного спектра. При увеличении периода до бесконечности дискретный амплитудный спектр периодической последовательности переходит в непрерывный спектр одиночного импульса. Вид этого спектра наглядно позволяет судить о свойствах периодических функций времени, например, по скорости уменьшения амплитудного спектра можно судить о степени гладкости периодической функции, а по наличию или отсутствию гармоник на высоких частотах – есть ли участки с быстрыми изменениями. Амплитудный спектр является четной функцией частоты, а фазовый – нечетной функцией.
Рисунок 5.2 Фазовый спектр входного сигнала
Таким образом, входной сигнал можно представить как
6.2 Определение напряжения на нагрузке
Для определения коэффициентов ряда Фурье выходного тока вычислим значения АЧХ и ФЧХ функции передачи, полученной нами в пункте 4.1, для значений ( k × w 1) ,k =0,1,2,3...14. Тогда:
Результаты вычислений:
Таблица 3.
k, номер гармоники |
Амплитуда k - той гармоники Uкн , B | Начальная фаза k - той гармоники kн , рад |
1 | 0.43 | -0.307 |
2 | 0.405 | -2.416 |
3 | 0 | - |
4 | 0.222 | -0.423 |
5 | 0.179 | -2.538 |
6 | 0 | - |
7 | 0.129 | -0.467 |
8 | 0.113 | -2.568 |
9 | 0 | - |
10 | 0.091 | -0.484 |
11 | 0.082 | -2.582 |
12 | 0 | - |
13 | 0.07 | -0.493 |
14 | 0.065 | -2.59 |
Заданная периодическая последовательность импульсов
Аппроксимация отрезком ряда Фурье
Напряжение на выходе цепи
Аппроксимация отрезком ряда Фурье
7. Заключение
В данной курсовой работе были применены различные современные методы для анализа разветвлённой линейной электрической цепи при различных воздействиях в переходном и установившемся режимах с применением вычислительной техники.
Вычисления, проводимые с помощью математического пакета MathCAD Profession , в большинстве случаев были проверены встроенными функциями, согласующимися с поставленной задачей в данной курсовой работе.
Анализ графиков показывает, что характер их изменения весьма соответствует характеру физической реализации цепи с данным включением L и С элементов.