Курсовая работа: Арифметичні застосування теорії конгруенцій

Означення 2. Якщо , , то під розумітимемо , тобто індекс будь-якого числа з класу пo модулю m.

5. Нехай g - первісний корінь по модулю ; тоді

.

Індекси по простому модулю .

Особливо велике значення має випадок, коли модуль - просте число. Оскільки, по будь-якому простому модулю р існують первісні корені, то, узявши за основу який-небудь з них, отримаємо систему індексів, в якій кожне число, що не ділиться на р, матиме свої індекси.

Індекси кожного такого числа згідно з теоремою 1 є невід′ємні числа деякого класу по модулю р-1, а теореми а теореми 2-5 дають наступні правила операцій з індексами по модулю р.:

якщо,

то , і, навпаки,

з виходить .

.

.

.

Скорочено тут скрізь опущений знак g, який вказує основу, яка передбачається однаковою в лівій і правою частинах. Всі індексовані числа передбачаються що діляться на р.

По простому модулю р для кожного числа існує безліч індексів, порівнянних по модулю р - 1, і як індекс можна брати будь-яке з них. Зазвичай зі всіх можливих значень індексів по даній основі беруть найменше; при такому виборі індексів вони мають значення менші ніж р - 1.

Таблиці індексів для простих модулів р містять індекси чисел від 1 до р - 1. Для кожного такого числа і всіх порівнянних з ним по модулю р в таблиці вказується індекс, який являє собою одне з чисел: 0,1., р - 1. У деяких таблицях як індекс одиниці вказується не 0, а р - 1. Таблиці індексів складалися багатьма авторами. У 1839 р.

К-во Просмотров: 329
Бесплатно скачать Курсовая работа: Арифметичні застосування теорії конгруенцій