Курсовая работа: Деякі скінченно-різнецеві методи розвязування звичайних диференціальних рівнянь

Виконав:

студент групи ПМ-41

Васьків Святослав

Перевірив:

науковий керівник:

Василишин П.Б.

Івано-Франківськ 2010


План

Вступ.

1. Чисельна ітерація рівнянь Ньютона

2. Алгоритм Бімана і Шофілда

3. Метод Рунге-Кутта

a) Метод Рунге — Кутта 4-го порядку

б) Неявні схеми Рунге-Кутта

в) Неявні інтерполяційні схеми

г) Програма Рунге-Кутта на мові С#

д) Програма Beeman

4. Метод Адамса

5.Метод Крилова

6. Метод Чаплигіна

Висновок

Список використаної літератури


Вступ

Приведемо декілька найбільш відомих скінченно-різнецевих методів рішення рівнянь руху з непереривною силою. Важливо пам'ятати про те, що успішне використання чисельного метода визначається не лише тим, наскільки добре він наближає похідну на кожному кроці, але і тим, наскільки добре він апроксимує інтеграли руху, наприклад повну енергію. Безліч алгоритмів, використовуються в наш час, свідчить про те, що жоден метод не перевершує по усіх параметрах усіх інших.


1. Чисельна ітерація рівнянь Ньютона

Для спрощення запису розглянемо одновимірний рух частини і запишемо рівняння Ньютона у виді:

(1)

(2)

Метою усіх скінцеворізнецевих методів являється знаходження значень x n +1 і v n+1 (точка в "фазовому просторі") у момент часу tn+1 =tn +∆t Нам вже відомо, що величину кроку ∆t потрібно вибирати таким чином, щоб метод інтегрування породжував приймати однакове рішення. Один із способів перевірки стійкості методу полягає в контролі величини повною енергії і забезпеченні того, щоби вона не відхилялася від початкового значення у разі, коли повна енергія зберігалась. Досить велике значення кроку приводить до не збереження повної енергії і до різних розв’язків для хn +1 i vn+1 , тобто до таких розв’язків, які все більше відхиляються з потоком часу від істинного розв’язку.

Суть багатьох алгоритмів, можна зрозуміти, розкладаючи

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 306
Бесплатно скачать Курсовая работа: Деякі скінченно-різнецеві методи розвязування звичайних диференціальних рівнянь