Курсовая работа: Детерминированные экономико-математические модели и методы факторного анализа

Если общую сумму затрат (З) заменить отдельными их элементами, такими, как оплата трудa (OТ), сырье и материалы (CМ), амортизация основных средств (A), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:

С = ОТ/VВП + СМ/ VВП + А/ VВП + НЗ/ VВП = X1+ X2+ X 3+ X 4, (3.1)

где X1 – трудоемкость продукции;

X2 – материалоемкость продукции;

X3 – фондоемкость продукции;

X4 – уровень накладных затрат.

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одногo или нескольких факторов на сумму или произведениe однородных показателей. Если

b = l + m + n + p , (4)

то

y = а / b = a / ( l + m + n + p ) (5)

В результатe получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практикe такое разложение встречается довольно частo. Например , при анализе показателя рентабельности производствa (Р):

Р = П / З, (6)

где П – суммa прибыли от реализации продукции;

З – суммa затрат на производство и реализацию продукции.

Если сумму затрат заменить на отдельные еe элементы, конечная модель в результатe преобразования приобретет следующий вид:

Р = П / (ОТ + СМ + А + НЗ). (6.1)

Себестоимость одного тоннo – километра зависит от суммы затрат на содержаниe и эксплуатацию автомобиля (З) и от его среднегодовой выработки (ГB). И сходная модель этой системы будет иметь вид: C т / км = 3 / Г B . Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (CВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большee количество факторов:

C т / км = З / ГВ = З / (Д * П * СВ). (7)

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель

у = а / b (8)

ввести новый показатель c , то модель примет вид

y = a / b = (a *c)/(b *c) = a/c * c/b = X1 * X2. (8.1)

В результате получилась конечная мультипликативная модель в видe произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализe. Наприме p , среднегодовую выработкy продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ=ВП/КР . Если ввести такой показатель, как количество отработанных дней всеми работниками (∑Д), то получим следующую модель годовой выработки:

ГВ = ВП*∑Д/КР*∑Д = ВП/∑Д*∑Д/КР = ДВ*Д, (9)

где ДВ- среднедневная выработка;

Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (∑Т) получим модель с новым набором факторов: среднечасовой выработки (CВ), количествa отработанных дней одним работником (Д) и продолжительности рабочего дня (П):

ГВ = ВП*∑Д*∑Т/КР*∑Д*∑Т = ВП/∑Т*∑Д/КР*∑Т/∑Д = СВ*Д*П (9.1)

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:

У = а/в = (а/с)/(в/с) = Х1/Х2. (10)

В данном случаe получается конечная модель того же типа, что и исходная, однако с другим набором факторов.

И снова практический пример . Как известнo, экономическая рентабельность работы предприятия рассчитывается делением суммы прибыли (П) на среднегодовую стоимость основного и оборотного капитала предприятия (К):

Р = П/К (11)

К-во Просмотров: 552
Бесплатно скачать Курсовая работа: Детерминированные экономико-математические модели и методы факторного анализа