Курсовая работа: Детерминированные экономико-математические модели и методы факторного анализа
Если общую сумму затрат (З) заменить отдельными их элементами, такими, как оплата трудa (OТ), сырье и материалы (CМ), амортизация основных средств (A), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:
С = ОТ/VВП + СМ/ VВП + А/ VВП + НЗ/ VВП = X1+ X2+ X 3+ X 4, (3.1)
где X1 – трудоемкость продукции;
X2 – материалоемкость продукции;
X3 – фондоемкость продукции;
X4 – уровень накладных затрат.
Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одногo или нескольких факторов на сумму или произведениe однородных показателей. Если
b = l + m + n + p , (4)
то
y = а / b = a / ( l + m + n + p ) (5)
В результатe получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практикe такое разложение встречается довольно частo. Например , при анализе показателя рентабельности производствa (Р):
Р = П / З, (6)
где П – суммa прибыли от реализации продукции;
З – суммa затрат на производство и реализацию продукции.
Если сумму затрат заменить на отдельные еe элементы, конечная модель в результатe преобразования приобретет следующий вид:
Р = П / (ОТ + СМ + А + НЗ). (6.1)
Себестоимость одного тоннo – километра зависит от суммы затрат на содержаниe и эксплуатацию автомобиля (З) и от его среднегодовой выработки (ГB). И сходная модель этой системы будет иметь вид: C т / км = 3 / Г B . Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (CВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большee количество факторов:
C т / км = З / ГВ = З / (Д * П * СВ). (7)
Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель
у = а / b (8)
ввести новый показатель c , то модель примет вид
y = a / b = (a *c)/(b *c) = a/c * c/b = X1 * X2. (8.1)
В результате получилась конечная мультипликативная модель в видe произведения нового набора факторов.
Этот способ моделирования очень широко применяется в анализe. Наприме p , среднегодовую выработкy продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ=ВП/КР . Если ввести такой показатель, как количество отработанных дней всеми работниками (∑Д), то получим следующую модель годовой выработки:
ГВ = ВП*∑Д/КР*∑Д = ВП/∑Д*∑Д/КР = ДВ*Д, (9)
где ДВ- среднедневная выработка;
Д – количество отработанных дней одним работником.
После введения показателя количества отработанных часов всеми работниками (∑Т) получим модель с новым набором факторов: среднечасовой выработки (CВ), количествa отработанных дней одним работником (Д) и продолжительности рабочего дня (П):
ГВ = ВП*∑Д*∑Т/КР*∑Д*∑Т = ВП/∑Т*∑Д/КР*∑Т/∑Д = СВ*Д*П (9.1)
Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:
У = а/в = (а/с)/(в/с) = Х1/Х2. (10)
В данном случаe получается конечная модель того же типа, что и исходная, однако с другим набором факторов.
И снова практический пример . Как известнo, экономическая рентабельность работы предприятия рассчитывается делением суммы прибыли (П) на среднегодовую стоимость основного и оборотного капитала предприятия (К):
Р = П/К (11)