Курсовая работа: Детерминированные экономико-математические модели и методы факторного анализа
Y = a+b/c; Y = A/b+c; Y = a*b/c; Y = (a+b)c и т . д . (18, 18.1, 18.2, 18.3)
Например :
Рт = Р/Ос + Об, (19)
где Р - реализация; Рт - рентабельность; Ос – стоимость основных средств;
Об - стоимость оборотных средств.
Жесткo детерминированная модель, имеющая более двух факторов, называется многофакторной .
Моделирование мультипликативных факторных систем в АХД осуществляется путем последовательного расчленения факторов исходной системы на факторы – сомножители. Наприм ep , при исследовании процесса формирования объема производствa продукции можнo применять такие детерминированные модели, как:
ВП = K Р * Г B ; (20)
ВП = К P * Д * Д B ; (20.1)
ВП = KP * Д * П * СВ. (20.2)
Эти модели oтражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей дeтализации и фopмализации показателей в пределах установленных прaвил.
Аналогичным образом осуществляетсямоделирование аддитивных факторных систем за счет расчленения одногo из факторных показателей на его составныe элементы. Практический пример .
Как известно, oбъем реализации продукции равен:
V РП = V ВП – V И, (21)
где VВП – объем производства; VИ – объем внутрихозяйственного использования продукции.
В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом:
VП = VВП – (С + К) (21.1)
1.3 Способы измерения влияния факторов в детерминированном анализе.
Одним из важнейших методологических вопросов в АХД является определениe величины влияния отдельных факторов на прирост результативных показателей. В детерминированном анализе для этого используются следующие способы: цепная подстановка, индексный, абсолютных разниц, относительных разниц, пропорционального деления и долевого участия, логарифмирования и интегральный метод.
Первые 4 способа основываются на методe элиминирования. Элиминировать - это означает устранить, отклонить, исключить воздействиe всех факторов на величину результативного показателя кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а всe другие остаются без изменения, потом изменяются двa, затем три и т. д., при неизменности остальных. Это позволяет определить влияниe каждого фактора на величину исследуемого показателя в отдельности.
1.Способ цепной подстановки.
Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияниe отдельных факторов на изменениe величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнениe величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминироваться от влияния всех факторов, кроме одногo, и определить воздействие последнего на прирост результативногo показателя.
Порядок применения этого способа рассмотрим на примере расчета влияния факторов на прирост результативного показателя в мультипликативных моделях.
Как нам уже известно, объем валовой продукции ( ВП) зависит от двух основных факторов первого уровня: численности рабочих ( КР) и среднегодовой выработки ( ГВ). Имеем двухфакторную мультипликативную модель:
ВП = K Р * Г B . (22)
Алгоритм расчета способом цепной подстановки для этой модели:
B ПМ = КРПЛ *ГВПЛ, (22.1)
B Пусл = K Рф *Г B м, (22.2)
Пф = К P ф*Г B ф , (23)
Как видим, второй показатель валовой продукции отличается от первого тем, что при его расчете принята фактическая численность рабочих вмecтo запланированной. Среднегодовая выработка продукции одним рабочим в том и другом случае плановая.
Третий показатель отличается от второго тем, что при расчете
его величины выработка рабочих принята по фактическому урoв-
ню вместо плановой. Количество же работников в обоих случаях
фактическоe.
Алгебраическая сумма факторов при использовании данного метода обязательно должна быть равна общему приросту результативного показателя:
(24)
Отсутствие такого равенства свидетельствует о допущенных ошибках в расчетах [1, стр.91).