Курсовая работа: Динамічні процеси та теорія хаосу
При значеннях _, що перевищують _: , можуть виникати хаотичні ітерації, тобто поведінка моделі на великих часах не укладається в рамки простого періодичного руху. У інтервалі _:< _ < 4 також присутні певні вузькі інтервали s_, для яких існують періодичні орбіти. Хаотична орбіта логістичного відображення показана на мал. 2 за допомогою залежності х n+1 від хn.
Рис. 1.2. Графічне вирішення різницевого рівняння першого порядку.
Роль цього відображення не лише в тому, що воно дає зразок хаосу. Було показано, що і інші відображення виду хп + 1 = f (xn ), де f (x) — квадратична або складніша функція, поводяться приблизно так само, задовольняючи тому ж закону (1.4). Явище подвоєння періоду або регулярної зміни бифуркационного параметра називають універсальною властивістю певних класів одновимірних різницевих моделей динамічних процесів.
Подвоєння періоду і відношення Фейгенбаума (1.4) виявляються в багатьох фізичних експериментах. Це означає, що в багатьох безперервних еволюційних процесах зведення до різницевого рівняння за допомогою перетину Пумнкаре приводить до квадратичного відображення (1.1); звідси слідує важлива роль відображень в дослідженні диференціальних рівнянь.
1.2 Аттрактор Лоренца і хаос в рідині
У 1963 р. фахівець з фізики атмосфери на ім'я Е.Н. Лоренц з Массачусетсського технологічного інституту запропонував просту модель теплової конвекції в атмосфері. Рідина, що підігрівається знизу, легшає і спливає, а важча рідина опускається під дією гравітації. Такі рухи часто організовуються в конвективні валики, подібні до рухів рідини в тривимірному торі, показаному на рис. 1.3.
Рис. 1.3. Вгорі – схема ліній струму рідини в конвективному вічку при стаціонарному русі; внизу – одновимірна конвекція в кільцевій трубці під дією сили тяжіння і градієнта температури.
У математичній моделі конвекції, яку запропонував Лоренц, використовуються три змінні (х, біля, z ), що описують стани системи. Змінна х пропорційна амплітуді швидкості, з якою рідина циркулює в рідкому кільці, а змінні біля і z відображають розподіл температури по кільцю. Так звані рівняння Лоренца можна формально отримати з рівняння Навьє — Стоксу, рівняння в приватних похідних механіки рідини. У безрозмірному виді рівняння Лоренца записуються таким чином:
(1.5)
Параметри _ і ? пов'язані відповідно з числами Прандтля і Релея, а третій параметр d описує геометрію системи. Відзначимо, що єдині нелінійні члени — це х z і ху в другому і третьому рівняннях.
При _ = 10 і d = 8/3 (набір параметрів, що віддається перевага фахівцями в цій області) і при ? > 1 є три положення рівноваги, з яких те, яке розташоване на початку координат, є нестійкою седловой крапкою (рис. 1.4).
Рис 1.4. Локальні схеми руху поблизу трьох крапок рівноваги для рівнянь Лоренца (1.5).
1.3 Універсальне відображення для нелінійних коливань
Структура відображення . Рівняння (1.6), званий гамильтониан породжує рівняння руху
(1.7)
де необурена частота нелінійних коливань визначається вираженням
(1.8)
Ці рівняння є диференціальними. Дискретна форма рівнянь руху у вигляді кінцевих різниць переважно для аналізу можливості появи стохастичності. Тому слід знатися на тому, як від рівнянь (1.7) перейти до їх різницевої форми і яка структура останніх.
Допустимо, що виділена деяка послідовність моментів часу t0 , t1 , t2 ..., і систему (1.7) удається звести до дискретної системи
яка зв'язує значення змінних (I ?) в двох послідовних моментах часу. Зручно ці рівняння записати в такій формі:
(1.9)
де індекс n опущений, межа стоїть замість індексу n + 1 і g 1 , g 2 — функції, залежні від виду обурення. Надалі оператор (mod2H) при фазі будемо, як правило, опускати.
Форма (1.9) є настільки спільною, що не містить ніякої інформації. У гамильтоновском випадку відображення (1.9) повинне зберігати міру, тобто повинна виконуватися умова
(1.10)
Це означає, що
Для того, щоб система (1.9) знайшла який-небудь сенс, в неї слід вкласти фізичний зміст.