Курсовая работа: Динамічні процеси та теорія хаосу

де f і g - деякі інтегровані функції і

(1.34)

Так само, як і при переході від (1.30) до (1.31), нерівність (1.32) дозволяє зняти індекс As у формулах (1.33) і (1.34). Тоді їх вигляд нічим не відрізняється від визначень в гамильтоновском випадку, якщо замінити dAs (z) на (z) в (1.34).

Властивість (1.34) означає існування процесу перемішування, який, проте, реалізується тепер не на всьому фазовому просторі, а на деякій безлічі As . Виправданням цьому є те, що при виконанні нерівності (1.32) відзнака області, фазовою траєкторією, що покривається, від As мало.

2. Хаотичні коливання

2.1 Перемежана і перехідний хаос

Двома іншими формами непередбачуваних, нерегулярних рухів є перемежана і перехідний хаос. В разі перемежаної сплески хаотичного руху, або шуму, чергуються з періодами регулярного руху (рис. 2.1).

Рис. 2.1. Переміжний хаотичний рух.

Таку поведінку спостерігав ще Рейнольдс в своїх експериментах по вивченню передтурбулентного режиму в трубах (1883 р.). Перехідний хаос спостерігається також в деяких системах як передвісник стаціонарного хаосу. За певних початкових умов система може поводитися квазівипадковим чином, тобто її траєкторії можуть рухатися у фазовому просторі, неначебто вони знаходилися на дивному аттракторе, але через деякий час рух виходить на регулярний аттрактор, як в разі періодичних коливань. Інколи для експериментального визначення критичного параметра для перемежаної і перехідного хаосу використовуються властивості подібності нелінійного руху. В разі перемежаної, коли поведінка системи близька до періодичного руху, але час від часу зазнає короткі сплески перехідного хаосу, пояснення такої поведінки в термінах одновимірних відображень, або різницевих рівнянь, була дане Манневілем і Помо.

Як показали чисельні експерименти з відображеннями, середня тривалість періодичного руху <@> між двома послідовними хаотичними сплесками складає величину

(2.1)

де _ - параметр (наприклад, швидкість рідини, амплітуда сили, що вимушує, або напруга, що вимушує), що управляє _с — критичне значення параметра _, при якому виникає хаотичний рух. Із збільшенням настроєння _ - _с тривалість хаотичного інтервалу збільшується, а тривалість періодичного інтервалу скорочується. Таке явище можна було б назвати повзучим хаосом .

Для експериментального визначення параметра _с необхідно зміряти два середні часи, <@>, і <@>2, при відповідних значеннях параметра, що управляє _1 і _2 . Це дозволить опреде-шть коефіцієнт пропорційності в співвідношенні (2.1), а також величину _с . Але, встановивши «кандидата» в _с , необхідно потім зміряти інші значення (<@> _), щоб підтвердити закон подібності (2.1).

Випадок перехідного хаосу був досліджений Гребоги і ін. з Університету штату Меріленд в серії робіт по чисельних експериментах з двовимірними відображеннями. У роботах ці автори розгледіли двовимірне узагальнення одновимірного квадратичного різницевого рівняння, що отримало назву «Відображення Енона»:

де J — визначник якобиана, службовець коефіцієнтом стискування майданів при відображенні. У дослідженнях мэрилендской групи коефіцієнт J був вибраний рівним -0,3, а параметр ? варіювався в певних межах. Наприклад, при ? > ?0 = 1,062371838 спостерігалося народження з траєкторій з періодом 6, дивного аттрактора, що складається з 6 окремих часток, який існує в діапазоні ?0 < ? < ?c = 1,080744879

При ? > ? з траєкторія при ітераціях відображення Енона блукає навколо «примари» дивного аттрактора на плоскості; після чого в системі встановлюється періодичний режим з періодом 4.

Гребоги і ін. виявили, що середня тривалість <@> перехідного хаосу задовольняє закону подібності

(2.2)

Середнє було знайдене шляхом вибору 102 початкових умов при кожному виборі ?. Початкові умови вибиралися в первинній області тяжіння дивного аттрактора, що припинив існування. Тривалість таких перехідних хаотичних режимів може бути дуже велика. Наприклад, в разі відображення Енона Гребоги і його співробітники виявили, що <@> : 104 при і <@> : 103 при.

Та ж група дослідників виявила відображення, що породжують суперперехідний хаос , в якому тривалість перехідного періоду задовольняє закону подібності

. (2.3)

Ці результати дозволяють передбачити, що час життя деяких перехідних хаотичних режимів може перевершувати тривалість будь-якого експерименту. Математика, що зачіпає в цих дослідженнях, пов'язана з гомоклиническими точками перетину стійкого і нестійкого многообразий при відображеннях. Виникнення гомоклинических точок перетину мэрилендская група називає кризами .

2.2 Консервативний хаос

Хоча останнім часом активність в області нелінійної динаміки пов'язана переважно з хаосом в диссипативних системах, вже чималий час відома можливість хаотичної поведінки в бездиссипативных, або так званих консервативних, системах. По суті справи, саме пошук вирішень рівнянь небесної механіки привів в кінці XIX ст деяких математиків, наприклад Пумнкаре, до припущення, що вирішення багатьох завдань динаміки чутливі до початкових умов і тому деталі руху тіл по орбітах виявляються непередбачуваними.

Фізичні приклади консервативних систем пов'язані з проблемами розрахунку орбіт в небесній механіці і поведінки часток в електромагнітних полях. Зрозуміло тому, що велика частка роботи в цій області була виконана тими, хто займається фізикою плазми, астрономією і астрофізикою.

Хоча в більшості земних динамічних систем відбуваються деякі втрати енергії, в деяких з них, як, наприклад, в структурованих конструкціях або мікрохвильових резонаторах, загасання дуже слабо, і на кінцевих інтервалах часу вони можуть поводитися як консервативні або гамильтоновы системи. Як приклад можна привести технологічну конструкцію, що знаходиться на навколоземній орбіті. Крім того, динаміка консервативних систем є граничним випадком динамічного аналізу при слабкому загасанні.

Системи, в яких зберігається енергія, в типових випадках виявляють тих же типів обмежених коливальних рухів, що і системи з втратами. До таких рухів належать періодичні, субгармонійні, квазіперіодичні і хаотичні. Одна з основних відзнак між коливаннями в системах з втратами і без них полягає в тому, що хаотичні орбіти в системах з втратами виявляють фрактальну структуру фазових портретів, тоді як в бездиссипативных системах така структура відсутня.

У консервативних системах хаотичні орбіти прагнуть однорідно заповнити всі частки деякого підпростору у фазовому просторі; іншими словами, вони характеризуються однорідною щільністю вірогідності в обмежених областях фазового простору. Тому бездиссипативные системи мають інші відображення Пумнкаре, чим системи з дисипацією. Проте як і раніше застосовна така міра розбіжності близьких орбіт, як показники Ляпунова. Прикладом бездиссипативной системи є кулька, що підскакує на пружному столі, причому стіл рухається і передбачається, що при зіткненнях не втрачається енергія, тобто вони упруги.

3. Фізичні експерименти з хаотичними системами

3.1 Хаос в пружній безперервній середі

Ф. Мун досліджував проблеми двох типів. У завданнях одного класу рівняння в приватних похідних, що описує рух стрижня, лінійно, але нелінійні масові сили або граничні умови. У інших завданнях руху достатньо сильні, щоб в рівняннях руху стали істотними нелінійні члени.

При малих вигинах і відхиленнях рівняння руху пружного стрижня має вигляд

К-во Просмотров: 395
Бесплатно скачать Курсовая работа: Динамічні процеси та теорія хаосу