Курсовая работа: Дослідження локальних формацій із заданими властивостями
Поняття добутку формацій становить інтерес із погляду побудови формацій.
Теорема 1.1. Добуток будь - яких двох формацій також є формацією.
Лема 1.3. Нехай і – нормальні підгрупи групи . Тоді кожний головний фактор групи - ізоморфний або деякому головному фактору групи , або деякому головному фактору групи
Доказ випливає з розгляду - ізоморфізму
Теорема 1.2. Нехай – деяка формація, – клас всіх тих груп, всі головні фактори яких належать Нехай – об'єднання формацій Тоді – підформація формації
Доказ. З леми 1.3 виводимо, що – формація. З теореми 1.1 і леми 1.1 випливає, що клас є формацією. Якщо – мінімальна нормальна підгрупа групи , то по індукції для деякого натурального . Але тоді або , або – - корадикал групи . Тому що , те звідси випливає, що , і теорема доведена.
Операції на класах груп
Визначення 2.1. Усяке відображення множини всіх класів груп у себе називається операцією на класах груп.
Операції ми будемо позначати, як правило, прямими більшими латинськими буквами. Результат операції , застосованої до класу позначається через Ступінь операції визначається так: Добуток операцій визначається рівностями:
Уведемо операції в такий спосіб:
тоді й тільки тоді, коли вкладається як підгрупа в якусь - групу;
тоді й тільки тоді, коли вкладається як нормальна підгрупа в якусь - групу;
тоді й тільки тоді, коли є гомоморфним образом якоїсь - групи;
тоді й тільки тоді, коли співпадає з добутком деякого кінцевого числа своїх нормальних - підгруп;
тоді й тільки тоді, коли має нормальні підгрупи такі, що
тоді й тільки тоді, коли є розширенням - групи за допомогою - групи;
тоді й тільки тоді, коли має нормальну підгрупу таку, що
Якщо , то замість пишуть Оборотний увага на той факт, що якщо – нормальні підгрупи групи , причому для кожного , то Помітимо ще, що операцію можна визначити за допомогою поняття підпрямого добутку. Нагадаємо (див. Каргаполов і Мерзляков [1]), що підгрупа прямого добутку називається підпрямим добутком груп якщо проекція на збігається з Легко бачити, що тоді й тільки тоді, коли є добуток деякого кінцевого числа - груп.
Визначення 2.2. Клас називається замкнутим щодо операції або, більш коротко, - замкнутим, якщо
Формацію можна визначити тепер як клас груп, що одночасно - замкнуть і - замкнуть. - замкнутий клас згідно Гашюцу [3] називається насиченим. - замкнутий клас груп називається гомоморфом. Клас груп називається замкнутим щодо підгруп (нормальних підгруп), якщо він - замкнутий (відповідно - замкнуть).
Лема 2.1. . Якщо клас груп містить одиничну групу й - замкнуть, то
Доказ. Щодо операцій і твердження очевидно. Нехай – довільний клас груп. Ясно, що Якщо , те в найдеться нормальна підгрупа така, що . Група має нормальну підгрупу таку, що й Але тоді Тому що , те, а виходить, Таким чином, , що й потрібно.
Нехай . Якщо , то має нормальну - підгрупу таку, що Група має нормальну - підгрупу таку, що . Тому що й , те з - замкнутості класу треба, що . Виходить, , тобто . Зворотне включення очевидно.
Лема 2.2. Для будь - якого класу справедливо наступне твердження:
Доказ. Якщо , то Нехай Якщо , те, а виходить, . Таким чином, . Нехай . Тоді має такі нормальні підгрупи , що Група має такі нормальні підгрупи , що Тому що , те, що й доводить рівність
Лема 2.3. Для будь - якого класу має місце включення
Доказ. Якщо , то . Нехай і група є підпрямим добутком груп , де . Розглянемо функцію . Функція є гомоморфізмом групи в групу . Ясно, що