Курсовая работа: Дослідження локальних формацій із заданими властивостями

1) p - однорідним, якщо він p - постійний і для будь - якої групи і її силовської p – підгрупи має місце ;

2) однорідним, якщо він p - однорідний для будь - якого простого p;

3) локальним, якщо він є локальною груповою функцією;

4) композиційним, якщо для будь - якої групи має місце , де пробігає всі фактори групи

5) порожнім, якщо для будь - якої неодиничної групи ;

6) - екраном, якщо для будь - якої групи .

- екран при будемо називати одиничним екраном.

Легко бачити, що кожний локальний екран є однорідним, а кожний композиційний екран є примарно постійним.

Приклад 3.1. Нехай і – непусті формації, причому , а групова функція така, що для кожної групи й для будь - який групи . Тоді – однорідний екран, що не є ні локальним, ні композиційним.

Приклад 3.2. Нехай – непуста формація, а групова функція така, що для будь - який групи виконуються умови:

1) , якщо не має абелевих композиційних факторів;

2) , якщо має хоча б один абелев композиційний фактор.

Тоді – композиційний екран, що не є однорідним.

Зауваження 1. Локальний екран повністю визначається своїми значеннями на підгрупах. Щоб побудувати локальний екран , досить кожному простому числу поставити у відповідність деяку формацію , а потім для будь - якої групи покласти , де пробігає .

Зауваження 2. Щоб побудувати композиційний екран , потрібно кожній простій групі поставити у відповідність деяку формацію , а потім для будь - якої групи покласти , де пробігає всі композиційні фактори групи .

Лема 3.3. Справедливі наступні твердження: 1) перетинання будь - якої непустої множини однорідних екранів знову є однорідним екраном;

2) перетинання будь - якої непустої множини локальних екранів знову є локальним екраном;

3) перетинання будь - якої непустої множини композиційних екранів знову є композиційним екраном.

Доказ. Нехай екран є перетинанням множини екранів . Припустимо, що всі екрани є локальними, тобто для будь - яких і має місце рівність:

де пробігає всі підгрупи групи . Тоді

а виходить, – локальний екран.

Лема 3.4. Об'єднання будь - якого непустого ланцюга примарно постійних екранів є примарно постійним екраном.

Доказ. Нехай – деякий ланцюг екранів, – її об'єднання, . По лемі 3.3 функція є екраном, причому ясно, що постійність тягне постійність екрана . Припустимо, що все є однорідними екранами. Тоді, якщо – будь - яка група й , те . Отже,


що й доводить однорідність екрана .

Екрани формацій

Кожної групової функції відповідає формація

К-во Просмотров: 209
Бесплатно скачать Курсовая работа: Дослідження локальних формацій із заданими властивостями