Курсовая работа: Дослідження топологічного визначення верхніх напівґрат
Тоді множини виду вичерпують всі відкриті множини в стоуновом просторі SpecL.
Доказ.
Потрібно перевірити виконання аксіом топологічного простору.
1) Розглянемо ідеал, утворений 0. Тоді
,
але 0 лежить у будь-якому ідеалі, а значить .
2) Візьмемо довільні ідеали й напівґрати й розглянемо
Нехай . Тоді існують елементи a і Звідси треба, що , де L\P – коідеал. По визначенню коідеала існує елемент d такий, що й , виходить, . Так як. , отже, . Одержуємо, що .
Зворотне включення очевидно.
2) Нехай - довільне сімейство ідеалів. Через позначимо множину всіх точних верхніх граней кінцевого числа елементів, що є представниками сімейства . Покажемо, що - ідеал. Нехай , тоді , де для деякого ідеалу . Тоді лежить в ідеалі , отже, і , тобто . Обернено очевидно.
Довели, що - ідеал. Тепер розглянемо довільне об'єднання.
■
Лема 4 : Підмножини виду простору можна охарактеризувати як компактні відкриті множини.
Доказ.
Дійсно, якщо сімейство відкритих множин покриває множина , тобто , те Звідси треба, що для деякої кінцевої підмножини , тому . Таким чином, множина компактно.
Нехай відкрита множина r(I) компактно, тоді й можна виділити кінцеве під покриття для деяких .
Покажемо, що I породжується елементом .
Припустимо, що це не так, і в ідеалі I найдеться елемент b не лежачий в. Тоді [b) – коідеал, не пересічний с. По лемі 2 найдеться простий ідеал P утримуючий і не пересічний з [b). Одержуємо, , тому що (тобто ), але , тому що , протиріччя. Отже, компактною відкритою множиною r(I) буде тільки у випадку, якщо - головний ідеал.
Пропозиція 5: Простір є - простором.
Доказ.
Розглянемо два різних простих ідеали й Q . Хоча б один не втримується в іншому. Допустимо для визначеності, що . Тоді r(P) містить Q , але не містить P, тобто SpecL є - простором. :
Теорема 6 : Стоуновий простір визначає напівґрати з точністю до ізоморфізму.
Доказ.
Потрібно показати, що двоє напівґрат і ізоморфні тоді й тільки тоді, коли простори й гомеоморфни.
Очевидно, якщо ґрати ізоморфні, то простору, утворені цими напівґратами будуть збігатися.
Нехай і гомеоморфни ( ) і . Тоді a визначає компактна відкрита множина r(a) . Множині r(a) відповідає компактна відкрита множина , з однозначно певним елементом по лемі 4. У такий спосіб одержуємо відображення : , при якому . Покажемо, що - ізоморфізм ґрат. Якщо a,b – різні елементи з , те, отже, , тому й - ін'єкція.
Для довільного відкритій множині відповідає й очевидно, що показує сюрективність .
Нехай a,b – довільні елементи з . Помітимо, що . Відкритій множині при гомеоморфізмі відповідає відкрита множина , а відповідає . Отже, = . Оскільки = , те, тобто