Курсовая работа: Экспериментальное исследование свойств методов Рунге-Кутты
А его, в свою очередь, можно представить рядом Тейлора:
(11)
где - сумма элементов ряда Тейлора, степень которых не ниже 3.
Осталось найти неизвестные значения
(12)
В результате таких бесхитростных манипуляций получаем искомый ряд Тейлора:
(13)
Приравняем коэффициенты при одинаковых степенях в выражениях
(11) и (13). В итоге получим систему уравнений вида:
(14)
Из свойств системы (14) следует отметить, что она не обладает единственным решением. При значение , значение , а (15)
Подставив полученные коэффициенты в соотношение (8), получаем следующие формулы метода Рунге-Кутты 2-ого порядка:
(16)
2 ОПИСАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ
Составленная в ходе курсовой работы программа вычисляет решения дифференциального уравнения, с предварительно заданными начальными условиями. Интегрирование происходит согласно двум методам: Рунге-Кутты второго и четвертого порядков.
Программа состоит из следующих модулей:
1) Основная программа;
2) Процедура вычисления точного решения ДУ;
3) Процедура вычисления правых частей;
4) Процедура выполняющая шаг интегрирования методом Рунге-Кутты 2-ого порядка;
5) Процедура выполняющая шаг интегрирования методом Рунге-Кутты 4-ого порядка.
2.1 Основная программа
Блок программы осуществляет следующие операции:
· запрашивает у нерадивого пользователя величину шага интегрирования и шаг вывода на экран;
· вычисляет количество шагов;
· с заданным шагом вызывает процедуры интегрирования методом Рунге-Кутты 2-ого и 4-ого порядков на отрезке интегрирования;
· вычисляет погрешность и оценку погрешности интегрирования;
· выводит замечательные результаты работы программы с заданным шагом вывода на экран.
Для простоты понимания укажем следующие переменные, содержащиеся в программе: