Курсовая работа: Экспериментальное исследование свойств методов Рунге-Кутты

Процедура RK2 выполняет шаг интегрирования системы ОДУ методом Рунге-Кутты 2-ого порядка из соотношения (5):

(5)

где

(6)

Процедура обращается к процедуре вычисления правых частей right с различными параметрами для вычисления и (6). Затем с Божьей помощью (5) считает значение .

Текст процедуры приведен в приложении А, схема в приложение Б.

2.5 Процедура RK4

procedure RK4(t: real; h: real; var x_4: vector_n);

Формальные параметры:

t – независимая переменная ;

h– шаг интегрирования;

x – массив решений. При входе в процедуру решение в текущем узле интегрирования, при выходе в следующем.

Процедура RK4 выполняет шаг интегрирования системы обыкновенных дифференциальных уравнений (1.1.2) методом Рунге-Кутты 4-ого порядка (7).

(7)

где

(8)

Процедура четыре раза обращается к процедуре вычисления правых частей right с разными параметрами для вычисления ,,,(8). Затем с Божьей помощью (7) считает значение .

Текст процедуры приведен в приложении А, схема в приложение Б.


3 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МЕТОДОВ РУНГЕ-КУТТЫ

3.1 Анализ влияния величины шага на точность интегрирования методами Рунге-Кутты второго и четвертого порядков

Плоды деятельности на ПЭВМ приводятся в приложении В. Результат упорного труда программы представлены в графическом виде (рисунок 1).

Рисунок 1 – Зависимость оценки e2 от шага интегрирования

Рисунок 2 – Зависимость оценки e4 от шага интегрирования

На рисунках изображены зависимости оценки погрешности интегрирования от величины шага интегрирования для обоих методов. Из него видно, что практические результаты соответствуют теоретическим положениям, но не совсем.

При шаге от 0.1 до 1 бесспорно влияние погрешности интегрирования как в методе второго, так и в методе четвертого порядков. Ошибка на данном интервале начинает лавинообразно возрастать, что связано с нарушением устойчивости алгоритма.

С дальнейшим уменьшением шага до 0.1 – 0.001 величина погрешности уменьшается за компанию, и наблюдается достаточно большая точность вычислений.

Дальнейшее уменьшение шага (менее 0.001) вызывает увеличение полной ош ибки, а также скверное её поведение. Это связано с возрастанием влияния ошибки вычислений из-за увеличения количества вычисл ений, необходимых для получения решения. На фон е уменьшения алгоритмической погрешности решающую роль играет погрешность вычислений, которая представляет собой сумму всех ошибок округления при реализации данного метода на конкретной ПЭВМ.

Из двух методов 2-го и 4-го порядков при одинаковых значениях шага точнее метод четвертого порядка, но при уменьшении шага, точность методов постепенно выравнивается.

К-во Просмотров: 383
Бесплатно скачать Курсовая работа: Экспериментальное исследование свойств методов Рунге-Кутты