Курсовая работа: Электрические цепи с нелинейными преобразователями и оперативная коррекция режима энергосистемы
Необходимые условия оптимума этой функции при ограничениях вида (2) и (3) имеют вид уравнений (1) и (4), где
является вектором неопределенных множителей Лагранжа для условия (2), когда оптимизируемая функция дополняется слагаемым ,
является вектором неопределенных множителей Лагранжа для условия (3), когда оптимизируемая функция дополняется слагаемым.
Таким образом, расчет данной электрической цепи эквивалентен поиску безусловного оптимума функции
(6)
Далее имеем:
, , ,
Отсюда следует, что функция (11) имеет глобальный минимум при
. (7)
Это имеет место, например, при и, в частности, для ЛОП. Синусно-косинусный преобразователь СКП, рассмотренный в примере 2.2, удовлетворяет соотношению (7) при.
Таким образом, при соблюдении условия (7) в электрической цепи достигается глобальный минимум некоторой выпуклой функции (6) токов I, потенциалов и напряжений E электрической цепи. Все эти выводы справедливы и в том случае, когда она содержит трансформаторами Денниса и диоды. Последнее означает, что математическая модель (1-4) электрической цепи с ОП может быть дополнена неравенствами вида (1.5-1.7):
(8)
(9)
(10)
где
- диагональная матрица, в которой "1" находятся в элементах, соответствующих ветвям, содержащим диоды,
- напряжения на диодах
При этом в электрической цепи, содержащей ОП и диоды, достигается минимум функции (6) при ограничении (8). Этот минимум является глобальным при выполнении условия (7)
4. Сдвоенная электрическая цепь
Рассмотрим частный случай электрической цепи с обратимыми преобразователями - т.н. сдвоенную электрическую цепь. Эта цепь состоит из двух простых электрических цепей, соединенных через ОП таким образом, что первичная ветвь каждого ОП включена в первую цепь, а вторичная ветвь - во вторую цепь. Из (3.1-3.4) следуют уравнения сдвоенной электрической цепи:
(1)
(2)
(3)
(4)
(5)
(6)
Сдвоенная электрическая цепь моделирует следующую задачу выпуклого программирования: минимизируется функция
(7)
при ограничениях (3, 4, 5). Необходимые условия оптимума этой функции при данных ограничениях имеют вид уравнений (1, 2, 6), где