Курсовая работа: Фактор группы Cмежные классы

|G : H|=|T|=|G|/|H|

ТЕОРЕМА 2.1.2. (Лагранжа) Если H-подгруппа конечной группы G, то | G| = | H|| G: H|. В частности, порядок конечной группы делится на порядок каждой своей подгруппы.

Доказательство.

Пусть индекс Hв группе G равен n . По теореме 2.1.1. имеем разложение

G=HgHgHg, HgHgÆпри i ≠ j.


Так как

| Hg| = |H| для всех i, то | G | = | H || G : H |

СЛЕДСТВИЕ 2.1.1. Порядок каждого элемента конечной группы делит порядок всей группы.

Доказательство

Порядок элемента a совпадает с порядком циклической подгруппы áаñ, порожденный этим элементом, см. теорему 1.1. Поэтому, | á аñ | = | a | делит | G|.

Аналогично определяется левая трансверсаль подгруппы H в группе G. Если L={ l | aÎJ} – левая трансверсаль подгруппы H в группе G, то

G=lH, lHÇlH=Æпри .

Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в левой трансверсали L подгруппы H, т.е. | G : H |=| L |. Для левой трансверсали справедлив аналог теоремы 2.1.1 .Поэтому из теоремы Лагранжа имеем

СЛЕДСТВИЕ 2.1.2. Число левых и число правых смежных классов конечной группы G по подгруппе Hсовпадают.

ТЕОРЕМА 2.1.3. В группе простого порядка нет неотрицательных подгрупп. В частности, группа простого порядка циклическая.

Доказательство.

Пусть G – конечная группа простого порядка p. Если H – подгруппа группы G, то по теореме Лагранжа | H | делит | G |. Поэтому либо | H |=1 и H – единичная подгруппа, либо | H |= p и H совпадает с группой G. Выберем неединичный элемент а в группе G и рассмотрим циклическую подгруппу áаñ, порожденную этим элементом. Так как a ≠ e ,то á аñ ≠ E, поэтому áаñ = G и G – циклическая группа.

ТЕОРЕМА 2.1.4. Пусть H≤ K≤ G и G – конечная группа. Если T – правая трансверсаль подгруппы H в группе K, а S – правая трансверсаль подгруппы K в группе G, то TS – правая трансверсаль подгруппы H в группе G. В частности, | G : H | = | G : K || K : H |.

Доказательство

Пусть

T={t, … ,t}, S={s, … , s}

Тогда

K=Ht. . . Ht, HtHtÆ, i ≠j;

G=Ks. . . Ks, KsKsÆ, i ≠j.

Теперь

G =( Ht. . . Ht)s. . . ( Ht. . . Ht)s. (2.1.1)

Предположим, что HtsHts для некоторых натуральных a,b,c и d. Тогда

ts(ts) = tsstÎH ≤ K,

поэтому

К-во Просмотров: 477
Бесплатно скачать Курсовая работа: Фактор группы Cмежные классы