Курсовая работа: Фактор группы Cмежные классы
Аналогично,
Hgk= и hgK=hgK
тогда и только тогда, когда hhÎHK. Поэтому, в произведении HgK левых смежных классов по K будет точно столько, каков индекс
|H : HK|
Произведение подгрупп. При g= e двойной смежный класс HgK=HK={hk | hÎH , kÎK} превращается в произведение подгрупп H и K . В общем случае HK не является подгруппой.
Пример:
Найдем разложение симметрической группы S в левые смежные классы по подгруппе .
Для этого найдем все левые смежные классы группы
S={Î,(12),(13),(23),(123),(132)} по подгруппе H=={Î,(12)}
ÎH= Î{Î, (12)} = {Î, (12)} = H,
(12)H= (12) {Î, (12)} = {(12), Î} = H,
(13)H= (13) {Î, (12)} = {(13), (123)},
(23)H= (23) {Î, (12)} = {(23), (132)},
(123)H= (123){Î,(12)} = {(123),(13)} = (13)H,
(132)H= (132){Î,(12)} = {(132),(23)} = (23)
Искомое разложение принимает вид
S=ÎH(13) H(23) H.
3. НОРМАЛЬНЫЕ ПОДГРУППЫ И ФАКТОР-ГРУППЫ
3.1 Нормальные подгруппы
Подгруппа H называется нормальной подгруппой группы G, если xH=Hx для всех xÎG. Запись HG читается так: “H – нормальная подгруппа группы G”. Равенство xH=Hx означает, что для любого элемента hÎH существует элемент hÎH такой, что xh=hx.
ТЕОРЕМА 3.1.1.(Критерий нормальной подгруппы) Для подгруппы H группы G следующие утверждения эквивалентны:
1) H – нормальная подгруппа группы G;
2) Подгруппа H вместе с каждым своим элементом содержит все ему сопряженные элементы, т.е. hÎH для всех hÎH и всех xÎG;
3) Подгруппа H совпадает с каждой своей сопряженной подгруппой, т.е. H=H для всех xÎG.
Доказательство .
Доказательство проведем по схеме (1) (2) (3)(4)
(1) (2). Пусть HG, т.е. xH=Hx для всех xÎG. Если h — произвольный элемент из H, то hx Hx = xH. Поэтому существует элемент hH такой, что hx = x h.Теперь xhx = h H.
(2) (3). Пусть выполняются требование 2). Тогда H = {h | h H} ÍÍ H для всех x G. В частности, HxÍ H, т.е. xHxÍ H. Теперь
H Í xHx =H и H = H для всех x G.