Курсовая работа: Интегрирование и дифференцирование интегралов, зависящих от параметра

Доказательство. Разобьем интеграл (6) на два интеграла:

.

В силу условия (7) и теоремы 3 функция регулярна в полуплоскости , а функция - в полуплоскости , что и доказывает теорему.

В частности, если функция финитна, т.е. при , и непрерывна при , то ее преобразование Фурье является целой функцией. Это следует из теоремы 1, поскольку в этом случае

.

Преобразованием Меллина функции , определенной на полуоси , называется функция

(8)

Здесь .


Теорема 5. [7, c.114] Пусть функция непрерывна при и удовлетворяет оценкам:

, (9)

где . Тогда ее преобразование Меллина является функцией, регулярной в полосе .

Доказательство. Разобьем интеграл (8) на два интеграла

.

Пусть , и ; тогда

.

Так как сходится при , то, по признаку Вейерштрасса, интеграл сходится равномерно по при . В силу следствия 2 функция регулярна в полуплоскости .

Далее, при , и имеем

Из сходимости интеграла и следствия 1 вытекает, что функция регулярна в полуплоскости .

Преобразования Фурье и Меллина связаны следующим соотношением:


, (10)

где - преобразование Меллина, а - преобразование Фурье функции . Действительно, делая замену переменной , получаем

(мы предполагаем, что все интегралы сходятся). Последний интеграл совпадает с правой частью формулы (10).

В частности, с помощью соотношения (10) можно вывести теорему 5 из теоремы 4.

2. Интеграл коши на кривой

(11)

Интеграл называется интегралом типа Коши. Исследуем его аналитические свойства в предположении, что функция непрерывна на кривой .

1. Пусть - конечная кривая. Тогда дополнение к состоит из конечного или бесконечного числа областей. В каждой из этих областей интеграл типа Коши является регулярной функцией в силу теоремы 1.Однако эти регулярные функции, вообще говоря, различны, т.е. не являются аналитическими продолжениями друг друга. Например,

К-во Просмотров: 407
Бесплатно скачать Курсовая работа: Интегрирование и дифференцирование интегралов, зависящих от параметра