Курсовая работа: Инвариантные подгруппы бипримарных групп
фактор-группа группы по
множество всех простых делителей натурального числа
множество всех простых делителей порядка группы
подгруппа Фиттинга группы
наибольшая инвариантная -подгруппа группы
индекс подгруппы в группе
2. Инвариантные подгруппы бипримарных групп
1. Введение. Две работы (1) и (2), написанные Бернсайдом в 1904 г., посвящены конечным бипримарным группам - группам порядка , и - различные простые числа. В первой работе доказана разрешимость таких групп. Во второй - устанавливался следующий факт: в группе порядка при существует характеристическая -подгруппа порядка , за исключением двух случаев , и , .
Однако группа , являющаяся расширением элементарной абелевой группы порядка с помощью силовской -подгруппы из группы автоморфизмов группы , имеет порядок , и в нет неединичных инвариантных -подгрупп. Этот пример указывает на то, что в работе имеется пробел.
В настоящей работе рассматривается более общая ситуация, чем в . А именно, изучаются разрешимые группы порядка , где . Основным результатом является
Теорема Пусть - конечная разрешимая группа, порядка , - простое число и не делит . Если , то либо обладает характеристической -подгруппой порядка , либо справедливо одно из следующих утверждений:
1) , и делит порядок ;
2) , делит порядок , где - простое число, причем , если , и , если ;
3) , 1 и делит порядок .
Если и - различные простые числа, и - целые положительные числа, то либо , либо . Поэтому теорема распространяется па все бипримарные группы.
Теорема Пусть - группа порядка , и - простые числа. Если , то либо обладает характеристической -подгруппой порядка , либо справедливо одно из следующих утверждений:
1) , , и ;
2) , , , причем , если , и , если ;
3) , , и .
Следствие Если и - нечетные простые числа и , то любая группа порядка обладает характеристической -подгруппой порядка .
Следующая теорема показывает, что границы, установленные для чисел и , являются точными и что инвариантной -подгруппы в исключительных случаях теорем (4) и (1) может и не быть.
Теорема Группа порядка , , не имеющая неединичных инвариантных -подгрупп, существует для каждого из следующих трех случаев:
1) , , и ;