Курсовая работа: Иррациональные уравнения

Решение. или . Тогда , .

Проверка.

Если , то выражение не имеет смысла.

Если , то , равенство верно.

Следовательно, уравнение имеет единственный корень:-2.

О т в е т: {-2}.

Если при решении уравнения мы заменили его уравнением - следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в следствие.

Рассмотрим уравнение (3) и умножим обе части его на одно и тоже выражение , имеющее смысл при всех значениях . Получим уравнение: (4), корнями которого служат как корни уравнения (3), так и корни уравнения .

Значит, уравнение (4) есть следствие уравнения (3). Ясно, что уравнения (3) и (4) равносильны, если «постороннее» уравнение не имеет корней. Таким образом, справедлива следующая теорема.

Теорема 1. Если обе части уравнения умножить на , то получится уравнение, являющееся следствием исходного. Если уравнение не имеет корней, то полученное уравнение равносильно исходному (если область допустимых значений не уже области допустимых значений переменной данного уравнения).

Пример 1. .

Заметим, что подобное преобразование, т.е. переход от уравнения (4) к уравнению (3) делением обеих частей уравнения (4) на выражение , как правило, недопустимо, поскольку можно привести к потери корней, в этом случае могут «потеряться» корни уравнения .

Пример 2. Уравнение имеет два корня: 3 и 4.

Деление обеих частей уравнения на приводит к уравнению , имеющий только один корень 4, т.е. произошла потеря корня.

Снова возьмем уравнение (3) и возведем обе его части в квадрат. Получим уравнение: (5), корнями которого служат как корни уравнения (3), так и корни «постороннего» уравнения . Ясно, что уравнения (3) и (5) равносильны, если у «постороннего» уравнения нет корней.

Пример 3. Уравнение имеет корень 4. Если обе части этого уравнения возвести в квадрат, то получится уравнение , имеющие два корня: -2 и 4. Значит, уравнение - следствие уравнения . При переходе от уравнения к уравнению появился «посторонний» корень: -2.

Теорема 2. При возведении обеих частей уравнения в квадрат (и вообще в любую четную степень) получается уравнение, являющееся следствием исходного.

Пример 1. .

При решении иррационального уравнения чаще всего стараются заменить его более простым, но равносильным исходному. Поэтому важно знать равносильные преобразования.

Определение 10. Уравнение, имеющее одни и те же корни, называют равносильными уравнениями. Уравнения, не имеющие корней, также считают равносильными. Другими словами два уравнения называют равносильными, если множества их решений совпадают. Равносильность обозначается следующим образом: .

Пример 1. Уравнения и равносильны, т.к. каждое из них имеет единственный корень – число 3. .

Пример 2. Уравнения и не равносильны, т.к. первое имеет только один корень: 6, а второе имеет два корня: 6 и -6.

Пример 3. Уравнения и равносильны, т.к. множества их решений пусты. .

Определение 11. Пусть даны уравнения и и некоторое множество М. Если любой корень первого уравнения, принадлежащий множеству М, удовлетворяют второму уравнению, а любой корень второго уравнения, принадлежащий множеству М, удовлетворяет первому уравнению, то эти уравнения называются равносильными на множестве М.

Пример 1. и не являются равносильными на множестве всех действительных чисел, т.к. первое уравнение имеет единственный корень 1, а второе имеет два корня: -1 и 1. Но эти уравнения равносильны на множестве всех неотрицательных чисел, т.к. каждое из них имеет на этом множестве единственный корень: 1.

Отметим, что часто множество М совпадает либо с ОДЗ уравнения , либо множеством всех действительных чисел.

Имеется ряд теорем о равносильности уравнений.

Теорема 3. При возведении обеих частей уравнения в одну и ту же нечетную степень получается уравнение, равносильное исходному.

Пример 1. .

К-во Просмотров: 600
Бесплатно скачать Курсовая работа: Иррациональные уравнения