Курсовая работа: Иррациональные уравнения
Пример 1. .
Теорема 5. Если обе части уравнения умножить или разделить на одно и тоже отличное от ноля число, то получится уравнение, равносильное исходному.
Пример 1. (обе части первого уравнения разделили на 2).
Теорема 6. Если в какой либо части уравнения выполнить тождественные преобразования, не меняющие области определения уравнения, то получится уравнение, равносильное исходному.
В школьной практике при решении иррациональных уравнений чаще всего используются два основных метода:
1) обеих частей уравнения в одну и ту же степень;
2) введение новых (вспомогательных) переменных.
Эти методы будем считать стандартными. В обязательном школьном курсе обычно этими методами и ограничиваются. Однако иногда приходится применять нестандартные методы и искусственные приемы решения иррациональных уравнений.
Типичная ошибка при решении иррациональных уравнений состоит в том, что школьники без дополнительных пояснений используют преобразования, нарушающие равносильность, что приводит к потере корней и появлению «посторонних» корней.
При возведении обеих частей иррационального уравнения в одну и ту же степень надо иметь в виду, что если степень - не четное число, то получим равносильное уравнение, если же степень - четное число, то получим уравнение - следствие. Поэтому при решении иррациональных уравнений в большинстве случаев необходима проверка найденных решений.
Проверки можно избежать, если решать иррациональные уравнения с помощью равносильных замен. Для этого полезно знать следующие теоремы.
Теорема 7. Уравнение вида равносильно смешанной системе
Уравнение вида
Теорема 8. Уравнение вида или .
Уравнение вида .
Далее рассмотрим более подробно типы иррациональных уравнений и методы их решения.
2. Стандартные иррациональные уравнения
Как правило, в школьном курсе рассмотрение иррациональных уравнений сводится к разбору нескольких несложных примеров. Они в большинстве случаев решаются возведением в квадрат левой и правой частей уравнения. После решения обязательно выполняется проверка. Не обращается внимание на то, что иррациональные уравнения могут решаться и с использованием понятия равносильности. В данном параграфе представлены различные виды иррациональных уравнений, которые можно отнести к стандартным и решать одним из следующих методов, а именно:
1) метод перехода к уравнению - следствию с последующей проверкой полученных корней;
2) метод равносильного перехода к уравнению или к смешанной системе;
3) метод введения новой переменной.
2.1 Уравнения вида
Пример 1. Решить уравнение .
Решение. Возведем обе части исходного уравнения в квадрат..
О т в е т: {6}.
Пример 2. Решить уравнение .
Решение. В левой части исходного уравнения стоит арифметический квадратный корень – он по определению неотрицателен, а в правой части – отрицательное число.
Следовательно, уравнение не имеет корней.
О т в е т:.