Курсовая работа: Изучение плоских диэлектрических волноводов для ТЕ поляризации
Граничные условия.
Исходя из условий Максвелла в интегральной форме, можно определить условия для векторов E , D , H , B на границе раздела двух сред, с разными и .
(19)
(20)
(21)
(22)
Где индексом i обозначены составляющие векторов, касательные к поверхности раздела двух сред 1 и 2. А индексом n – составляющие, нормальные к этой поверхности. Величина J – плотность поверхностных токов проводимости, а - плотность электрических зарядов, причем в тех случаях, которые мы будем рассматривать, они равны нулю. Эти же уравнения можно представить в векторной форме, если ввести в рассмотрение единичный вектор нормали к границе раздела.
Таким образом:
Формулы Френеля.
Пусть А – амплитуда электрического вектора поля падающей волны. Будем считать ее комплексной величиной с фазой , равной постоянной части аргумента волновой функции. Переменная ее часть имеет вид:
Теперь разложим вектор на параллельную и перпендикулярную составляющие:
Компоненты магнитного вектора получаются из соотношения
Отсюда
Граничные условия и требуют чтобы на границе тангенциальная составляющие векторов E и H были непрерывны. Следовательно, нужно потребовать выполнения следующих соотношений
Теперь можно получить важные соотношения (уравнения):
(23)
(24)
(25)
(26)
Решая эти уравнения, получаем уравнения Френеля:
(27)