Курсовая работа: Конечные группы с заданными системами слабо нормальных подгрупп
- наибольшая нормальная
-нильпотентная подгруппа группы
;
- коммутант группы
, т.е. подгруппа, порожденная коммутаторами всех элементов группы
;
-
-ый коммутант группы
;
- наибольшая нормальная
-подгруппа группы
;
-
-холловская подгруппа группы
;
- силовская
-подгруппа группы
;
- дополнение к силовской
-подгруппе в группе
, т.е.
-холловская подгруппа группы
;
- группа всех автоморфизмов группы
;
-
является подгруппой группы
;
-
является собственной подгруппой группы
;
-
является максимальной подгруппой группы
;
нетривиальная подгруппа - неединичная собственная подгруппа;
-
является нормальной подгруппой группы
;
- подгруппа
характеристична в группе
, т.е.
для любого автоморфизма
;
- индекс подгруппы
в группе
;
;
- централизатор подгруппы
в группе
;
- нормализатор подгруппы
в группе
;
- центр группы
;
- циклическая группа порядка
;
- ядро подгруппы
в группе
, т.е. пересечение всех подгрупп, сопряжённых с
в
.
Если и
- подгруппы группы
, то:
- прямое произведение подгрупп
и
;
- полупрямое произведение нормальной подгруппы
и подгруппы
;
-
и
изоморфны.
Группа называется:
примарной, если ;
бипримарной, если .
Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.