Курсовая работа: Конечные группы с заданными системами слабо нормальных подгрупп
, где .
Группу называют:
-замкнутой, если силовская -подгруппа группы нормальна в ;
-нильпотентной, если -холловская подгруппа группы нормальна в ;
-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;
-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
метанильпотентной, если существует нормальная нильпотентная подгруппа группы такая, что нильпотентна.
разрешимой, если существует номер такой, что ;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы называется такая подгруппа из , что .
Минимальная нормальная подгруппа группы - неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .
Цоколь группы - произведение всех минимальных нормальных подгрупп группы .
- цоколь группы .
Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:
- класс всех групп;
- класс всех абелевых групп;
- класс всех нильпотентных групп;
- класс всех разрешимых групп;
- класс всех -групп;
- класс всех сверхразрешимых групп;
Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.
Пусть - некоторый класс групп и - группа, тогда:
- -корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если - формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если - формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы .
Формация называется насыщенной, если всегда из следует, что и .
Класс групп называется наследственным или замкнутым относительно подгрупп, если из того, что следует, что и каждая подгруппа группы также принадлежит .
Произведение формаций и состоит из всех групп , для которых , т.е. .
Пусть - некоторая непустая формация. Максимальная подгруппа группы называется -абнормальной, если .