Курсовая работа: Конечные группы с заданными системами слабо нормальных подгрупп
то
и - квазинормальные в подгруппы. Следовательно, - слабо нормальная в подгруппа.
Утверждение (2) очевидно.
(3) Пусть - слабо нормальная подгруппа в группе и - квазинормальная в подгруппа такая, что и . Ясно, что и
Значит, слабо нормальна в и ввиду (1), - слабо нормальная в подгруппа.
2. Конечные группы со слабо нормальными подгруппами
В данном разделе мы докажем некоторые критерии разрешимых, метанильпотентных, дисперсивных по Оре и сверхразрешимых групп в терминах слабо нормальных подгрупп.
Следующая теорема доказывается аналогично теореме 3.5.1.
Группа разрешима тогда и только тогда, когда , где , - подгруппы группы такие, что каждая максимальная подгруппа из и каждая максимальная подгруппа из слабо нормальны в .
Пусть - группа тогда следующие утверждения эквивалентны:
(1) - разрешима;
(2) , где , - подгруппы группы такие, что каждая максимальная подгруппа из и каждая максимальная подгруппа из слабо квазинормальны в ;
(3) , где , - подгруппы группы такие, что каждая максимальная подгруппа из и каждая максимальная подгруппа из слабо нормальны в .
Группа метанильпотентна тогда и только тогда, когда , где подгруппа -квазинормальна в , - нильпотентна и каждая силовская подгруппа из слабо нормальна в .
Доказательство. Допустим, что , где - -квазинормальна в , - нильпотентна и каждая силовская подгруппа из слабо нормальна в . Покажем, что группа метанильпотентна. Предположим, что это не верно и пусть - контрпример минимального порядка. Тогда справедливы следующие утверждения.
(1) не является нильпотентной группой .
Предположим, что нильпотентна. Так как ввиду леммы (3), субнормальна, то содержится в некоторой нильпотентной нормальной подгруппе из по лемме (2). Тогда
нильпотентна и поэтому метанильпотентна. Полученное противоречие с выбором группы доказывает (1).
(2) .
Допустим, что . Тогда ввиду леммы , нильпотентна, что противоречит (1). Значит, мы имеем (2).
(3) Если - абелева минимальная нормальная подгруппа группы , содержащаяся в , то метанильпотентна .
Пусть - -группа и - силовская -подгруппа в . Тогда и поэтому по лемме каждая силовская подгруппа из слабо нормальна в . Поскольку по лемме , -квазинормальна в ,
то условия теоремы справедливы для . Так как , то ввиду выбора группы , метанильпотентна.
(4) Условия теоремы справедливы для (это проямо следует из леммы ).
(5) разрешима .