Курсовая работа: Конечные группы с заданными системами слабо нормальных подгрупп
Пусть - максимальная подгруппа группы . Нормальным индексом подгруппы называют порядок главного фактора , где и , и обозначают символом .
Пусть - группа и - различные простые делители порядка группы . Тогда группа называется дисперсивной по Оре, если существуют подгруппы , такие что - силовская -подгруппа группы и подгруппа нормальна в для всех .
Введение
В своей работе Оре рассмотрел два обобщения нормальности, оба из которых вызывают неослабевающий интерес у исследователей и в наши дни. Во-первых, в работе были впервые введены в математическую практику квазинормальные подгруппы: следуя, мы говорим, что подгруппа группы квазинормальна в , если перестановочна с любой подгруппой из (т.е. для всех подгрупп из ). Оказалось, что квазинормальные подгруппы обладают рядом интересных свойств и что фактически они мало отличаются от нормальных подгрупп. Отметим, в частности, что согласно, для любой квазинормальной подгруппы имеет место , а согласно, квазинормальные подгруппы - это в точности те субнормальные подгруппы группы , которые являются модулярными элементами в решетке всех подгрупп группы .
Понятно, что если подгруппа группы нормальна в , то в всегда найдется такая подгруппа , что выполнено следующее условие:
Таким образом, условие является еще одним обобщением нормальности. Такая идея также была впервые рассмотрена в работе, где в частности, было доказано, что: Группа является разрешимой тогда и только тогда, когда все ее максимальные подгруппы удовлетворяют условию . В дальнейшем, в работе подгруппы, удовлетворяющие условию были названы -нормальными. В этой же работе была построена красивая теория -нормальных подгрупп и даны некоторые ее приложения в вопросах классификации групп с заданными системами подгрупп.
В данной диссертационной работе мы анализируем следующее понятие, которое одновременно обобщает как условие квазинормальности, так и условие -нормальности для подгрупп.
Определение. Подгруппа группы называется слабо квазинормальной в подгруппой, если существует такая подгруппа группы , что и , - квазинормальные в подгруппы.
Следующий простой пример показывает, что в общем случае слабо квазинормальная подгруппа не является ни квазинормальной, ни -нормальной.
Пример. Пусть
,
где . И пусть , . Тогда и . Пусть - группа простого порядка 3 и , где - база регулярного сплетения . Поскольку , и - модулярная группа, то квазинормальна в и поэтому подгруппа слабо квазинормальна в . Значит, подгруппа является слабо квазинормальной в , но не квазинормальной и не -нормальной в .
В последние годы значительно возрос интерес к квазинормальным и -нормальным подгруппам, что говорит о несомненной актуальности данного направления. Следует отметить, что многими авторами (Асаад, Бакли, Баллестер-Болинше, Ванг, Вей, Ли, Педра-Агуэла, Рамадан, А.Н. Скиба, Сринивазан и др.) получено большое число теорем связанных с изучением групп, те или иные выделенные системы подгрупп которых -нормальны или квазинормальны. Не смотря на тот факт, что квазинормальность и -нормальность являются вполне различными обобщениями нормальности, в настоящее время получено много аналогичных результатов независимо для квазинормальных и -нормальных подгрупп. В данной работе такой параллелизм устраняется на основе введенного выше понятия слабой квазинормальности.
Таким образом, задача изучения групп с заданной системой слабо квазинормальных подгрупп вполне актуальна, ее реализации посвящена данная работа.
1. Определение и общие свойства слабо нормальных подгрупп
Определение. Подгруппа группы называется слабо нормальной в подгруппой, если существует такая квазинормальная подгруппа группы , что и .
Докажем ряд общих свойств слабо нормальных подгрупп.
Пусть - группа и . Тогда справедливы следующие утверждения:
(1) Пусть - нормальная в подгруппа. Тогда слабо нормальная подгруппа в группе тогда и только тогда, когда - слабо нормальная подгруппа в группе .
(2) Если - слабо нормальная в подгруппа, то - слабо нормальная в подгруппа.
(3) Пусть - нормальная в подгруппа. Тогда для всех слабо нормальных в подгрупп таких, что , - слабо нормальная подгруппа в группе .
Доказательство. (1) Пусть - слабо нормальная в подгруппа и - такая квазинормальная в подгруппа, что
Тогда , - квазинормальная в подгруппа и . Значит, - слабо нормальная в подгруппа.
Пусть теперь, для некоторой квазинормальной в подгруппы мы имеем и
Ясно, что
Поскольку