Курсовая работа: Конечные группы с заданными системами слабо нормальных подгрупп
Пусть - максимальная подгруппа группы
. Нормальным индексом подгруппы
называют порядок главного фактора
, где
и
, и обозначают символом
.
Пусть - группа и
- различные простые делители порядка группы
. Тогда группа
называется дисперсивной по Оре, если существуют подгруппы
, такие что
- силовская
-подгруппа группы
и подгруппа
нормальна в
для всех
.
Введение
В своей работе Оре рассмотрел два обобщения нормальности, оба из которых вызывают неослабевающий интерес у исследователей и в наши дни. Во-первых, в работе были впервые введены в математическую практику квазинормальные подгруппы: следуя, мы говорим, что подгруппа группы
квазинормальна в
, если
перестановочна с любой подгруппой из
(т.е.
для всех подгрупп
из
). Оказалось, что квазинормальные подгруппы обладают рядом интересных свойств и что фактически они мало отличаются от нормальных подгрупп. Отметим, в частности, что согласно, для любой квазинормальной подгруппы
имеет место
, а согласно, квазинормальные подгруппы - это в точности те субнормальные подгруппы группы
, которые являются модулярными элементами в решетке всех подгрупп группы
.
Понятно, что если подгруппа группы
нормальна в
, то в
всегда найдется такая подгруппа
, что выполнено следующее условие:
Таким образом, условие является еще одним обобщением нормальности. Такая идея также была впервые рассмотрена в работе, где в частности, было доказано, что: Группа
является разрешимой тогда и только тогда, когда все ее максимальные подгруппы удовлетворяют условию
. В дальнейшем, в работе подгруппы, удовлетворяющие условию
были названы
-нормальными. В этой же работе была построена красивая теория
-нормальных подгрупп и даны некоторые ее приложения в вопросах классификации групп с заданными системами подгрупп.
В данной диссертационной работе мы анализируем следующее понятие, которое одновременно обобщает как условие квазинормальности, так и условие -нормальности для подгрупп.
Определение. Подгруппа группы
называется слабо квазинормальной в
подгруппой, если существует такая подгруппа
группы
, что
и
,
- квазинормальные в
подгруппы.
Следующий простой пример показывает, что в общем случае слабо квазинормальная подгруппа не является ни квазинормальной, ни -нормальной.
Пример. Пусть
,
где . И пусть
,
. Тогда
и
. Пусть
- группа простого порядка 3 и
, где
- база регулярного сплетения
. Поскольку
,
и
- модулярная группа, то
квазинормальна в
и поэтому подгруппа
слабо квазинормальна в
. Значит, подгруппа
является слабо квазинормальной в
, но не квазинормальной и не
-нормальной в
.
В последние годы значительно возрос интерес к квазинормальным и -нормальным подгруппам, что говорит о несомненной актуальности данного направления. Следует отметить, что многими авторами (Асаад, Бакли, Баллестер-Болинше, Ванг, Вей, Ли, Педра-Агуэла, Рамадан, А.Н. Скиба, Сринивазан и др.) получено большое число теорем связанных с изучением групп, те или иные выделенные системы подгрупп которых
-нормальны или квазинормальны. Не смотря на тот факт, что квазинормальность и
-нормальность являются вполне различными обобщениями нормальности, в настоящее время получено много аналогичных результатов независимо для квазинормальных и
-нормальных подгрупп. В данной работе такой параллелизм устраняется на основе введенного выше понятия слабой квазинормальности.
Таким образом, задача изучения групп с заданной системой слабо квазинормальных подгрупп вполне актуальна, ее реализации посвящена данная работа.
1. Определение и общие свойства слабо нормальных подгрупп
Определение. Подгруппа группы
называется слабо нормальной в
подгруппой, если существует такая квазинормальная подгруппа
группы
, что
и
.
Докажем ряд общих свойств слабо нормальных подгрупп.
Пусть - группа и
. Тогда справедливы следующие утверждения:
(1) Пусть - нормальная в
подгруппа. Тогда
слабо нормальная подгруппа в группе
тогда и только тогда, когда
- слабо нормальная подгруппа в группе
.
(2) Если - слабо нормальная в
подгруппа, то
- слабо нормальная в
подгруппа.
(3) Пусть - нормальная в
подгруппа. Тогда для всех слабо нормальных в
подгрупп
таких, что
,
- слабо нормальная подгруппа в группе
.
Доказательство. (1) Пусть - слабо нормальная в
подгруппа и
- такая квазинормальная в
подгруппа, что
Тогда ,
- квазинормальная в
подгруппа и
. Значит,
- слабо нормальная в
подгруппа.
Пусть теперь, для некоторой квазинормальной в подгруппы
мы имеем
и
Ясно, что
Поскольку