Курсовая работа: Конечные группы с заданными системами слабо нормальных подгрупп
(6) В группе имеется в точности одна минимальная нормальная подгруппа , содержащаяся в .
Пусть - минимальная нормальная подгруппа группы , содержащаяся в . Тогда абелева согласно (5), и поэтому ввиду (3), метанильпотентна. Так как класс всех метанильпотентных групп. Кроме того, так как класс всех метанильпотентных групп является насыщенной формацией (см. ), то - единственная минимальная нормальная подгруппа группы , содержащаяся в .
(7) Если -группа, то каждая силовская -подгруппа из , где , имеет квазинормальное дополнение в .
Пусть - силовская -подгруппа в , где . Тогда ввиду (6), . По условию, слабо нормальна в и поэтому имеет квазинормальную подгруппу , такую что и
Заключительное противоречие .
Пусть - силовская -подгруппа в и . Тогда
По условию имеет квазинормальную подгруппу , такую что и
Тогда
и поэтому - дополнение для в , которое является квазинормальной в подгруппой. Если - -подгруппа из , где , то ввиду (7), имеет дополнение в , которое является квазинормальной подгруппой (см. доказательство утверждения (3) леммы ). Тогда по лемме , нильпотентна и поэтому метанильпотентна. Полученное противоречие доказывает метанильпотентность группы .
Обратно, предположим, что метанильпотентна. Покажем, что каждая силовская подгруппа из слабо нормальна в . Предположим, что это не верно и пусть - контрпример минимального порядка. Тогда имеет силовскую подгруппу , которая не является слабо нормальной в . Пусть - произвольная минимальная нормальная подгруппа в и - подгруппа Фиттинга группы . Предположим, что . Тогда слабо нормальна в и поэтому по лемме (1), слабо нормальна в , противоречие. Значит, и поэтому
Так как по условию метанильпотентна и - силовская подгруппа в , то имеет нормальное дополнение в . Но поскольку и - -группы, то - нормальное дополнение для в . Следовательно, слабо нормальна в . Полученное противоречие показывает, что каждая силовская подгруппа из слабо нормальна в .
Пусть