Курсовая работа: Краевые задачи для алгоритмов приближённого построения заданного режима термообработки проволок на встречных курсах

Исходя из физического смысла задачи, можно предположить, что свою заданную температуру они достигают в обогреваемой зоне муфеля в некоторых точках x = ± h :


(2.3)

Пусть

(2.4)

Итак, каждая из проволок, вступая в термоаппарат с нулевой температурой, его покидает с температурой Т4 . Следовательно, удельное количество тепла, поглощаемого проволокой в термоаппарате – удельная энергоёмкость данного процесса равна

, (2.5)

а показатель относительной энергоёмкости

(2.6)

равен

(2.7)

Необходимая для этого энергия поступает из внешнего источника, действующего в зоне , и следовательно,

(2.8)

В этой зоне средняя скорость нагрева проволок


(2.9)

а плотность внешнего теплового потока здесь постоянна и, согласно (1.11) ровна

(2.10)

В периферийных необогреваемых зонах муфеля j=0 и i=0.

При названных условиях и соглашениях систему (1.10), (1.18) преобразуем к виду:

(2.11)

где

(2.12)

Если

К<0,5 , (2.13)


то решение системы (2.12), удовлетворяющее всей совокупности названных условий и ограничений, можно выразить следующими зависимостями:

(2.14)

(2.15)

При этом

(2.16)

В зоне обогрева графиками температур ТАА (х), TB =T B ( x ), TC = TC ( x ) и средней температуры проволок

К-во Просмотров: 324
Бесплатно скачать Курсовая работа: Краевые задачи для алгоритмов приближённого построения заданного режима термообработки проволок на встречных курсах