Курсовая работа: Краевые задачи для алгоритмов приближённого построения заданного режима термообработки проволок на встречных курсах
(3.8)
Из этой же системы находим закон распределения температуры муфеля:
(3.9)
откуда получим
(3.10)
Находим плотность потока j(x) из системы (3.1) учитывая ТА =Т* , (3.8), (3.10).
(3.11)
Пусть теперь на известен закон распределения температуры проволоки А (см. рис1):
(3.12)
И пусть для проволоки В известно начальное условие:
(3.13)
Тогда согласно этому закону и начальному условию находим законы распределения температур проволоки В, муфеля и плотности j.
Учитывая уравнение (3.4) находим Т B (х)
(3.14)
(3.14) является линейным неоднородным уравнением вида [4]
(3.15)
Его решением является
(3.16)
Откуда находим
. (3.17)
Учитывая начальное условие (3.13) находим С=const
(3.18)
Подставляя С в (3.17) находим закон распределения температуры проволоки B:
Из (3.9) определим закон распределения температуры муфеля
(3.20)
Плотность теплового потока j находим из третьего уравнения системы (3.1), учитывая формулы (3.12), (3.19), (3.20).
Согласно второму параграфу на I=[-h; h] плотность потока j0 постоянная величина. Найдём её.
(3.21)