Курсовая работа: Краевые задачи для алгоритмов приближённого построения заданного режима термообработки проволок на встречных курсах
(3.22)
Учитывая (3.7) получаем
.
Определим неизвестный параметр . Определить его можно исходя из условия (3)
(3.23)
Перепишем это уравнение это уравнение в виде:
(3.24)
Решается это уравнение методом итераций. [1] Опишем схему решения: если каким-либо способом получено приближённое значение (в качестве можно взять произвольное значение из интервала, содержащего корень; такой интервал можно сделать достаточно малым) корня (3.24), то уточнение корня можно осуществить методом последовательных приближений. Для этого уравнение представляют в виде
, (3.25)
Что всегда можно сделать, и притом многими способами, например
, (3.26)
где c – произвольная постоянная.
Пусть число есть результат подстановки в правую часть уравнения (3.25):
(3.27)
Итерационный процесс сходится (), если на отрезке [a; b], содержащем корень и его последовательные приближения, выполнено условие
. (3.28)
4. Пример термообработки проволок на встречных курсах
Рассмотрим процесс термообработки проволок на встречных курсах аналогичный рассмотренному в предыдущем параграфе только в качестве закона распределения температуры проволоки А возьмём закон:
(4.1)
Тогда из системы (3.1) находим, ТВ (х), ТС (х) и плотность потока j, учитывая начальное условие (3.13).
Из (3.14) получаем
(4.2)
Решая его получаем:
(4.3)
Тогда
(4.4)
(4.5)
Заключение
В курсовой работе было рассмотрено: физические и математические модели термопроцессов на встречных курсах, простой и сложный отжиг проволок на встречных курсах в муфельном термоаппарате.
Приведены: методика исследования физических и математических моделей.
Рассмотрен пример термообработки проволок .