Курсовая работа: Краевые задачи для алгоритмов приближённого построения заданного режима термообработки проволок на встречных курсах

(3.22)

Учитывая (3.7) получаем

.

Определим неизвестный параметр . Определить его можно исходя из условия (3)

(3.23)

Перепишем это уравнение это уравнение в виде:

(3.24)

Решается это уравнение методом итераций. [1] Опишем схему решения: если каким-либо способом получено приближённое значение (в качестве можно взять произвольное значение из интервала, содержащего корень; такой интервал можно сделать достаточно малым) корня (3.24), то уточнение корня можно осуществить методом последовательных приближений. Для этого уравнение представляют в виде

, (3.25)


Что всегда можно сделать, и притом многими способами, например

, (3.26)

где c – произвольная постоянная.

Пусть число есть результат подстановки в правую часть уравнения (3.25):

(3.27)

Итерационный процесс сходится (), если на отрезке [a; b], содержащем корень и его последовательные приближения, выполнено условие

. (3.28)

4. Пример термообработки проволок на встречных курсах

Рассмотрим процесс термообработки проволок на встречных курсах аналогичный рассмотренному в предыдущем параграфе только в качестве закона распределения температуры проволоки А возьмём закон:

(4.1)

Тогда из системы (3.1) находим, ТВ (х), ТС (х) и плотность потока j, учитывая начальное условие (3.13).

Из (3.14) получаем


(4.2)

Решая его получаем:

(4.3)

Тогда

(4.4)

(4.5)

Заключение

В курсовой работе было рассмотрено: физические и математические модели термопроцессов на встречных курсах, простой и сложный отжиг проволок на встречных курсах в муфельном термоаппарате.

Приведены: методика исследования физических и математических моделей.

Рассмотрен пример термообработки проволок .

Список источников

К-во Просмотров: 321
Бесплатно скачать Курсовая работа: Краевые задачи для алгоритмов приближённого построения заданного режима термообработки проволок на встречных курсах