Курсовая работа: Линейные и нелинейные электрические цепи постоянного тока
Зарядный ток равен свободной составляющей, т.к ток установившегося режима равен 0 (iуст =0).
Длительность заряда конденсатора:
t=5τ=5ּ0,5=2,5 с.
Вычисляем значение напряжения на конденсаторе при его заряде для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
t=0, В;
t=τ, B;
t=2τ, B;
t=3τ, B;
t=4τ, B;
t=5τ, B.
Аналогично вычисляем значения зарядного тока согласно закону изменения переходного тока при заряде конденсатора для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
t, c | 0 | τ | 2τ | 3τ | 4τ | 5τ |
i, мкА | 25 | 9, 19 | 3,38 | 1,24 | 0,46 | 0,17 |
Согласно полученным результатам строим графики зарядного напряжения и тока в зависимости от τ. (рис 2.7)
|
|
рис 2.7 |
Из построенных графиков u (t) и i (t) можно для любого момента времени определить значение u и i, а также рассчитать запасенную энергию в электрическом поле заряженного конденсатора. Например, при t=3τ:
Дж.
2) Переключатель в положении 2 (разряд конденсатора).
Быстрота разряда конденсатора также зависит от параметров цепи и характеризуется постоянной времени, разряда конденсатора:
τ =RC=104 ּ50ּ10-6 =0,5 с
На основании второго закона коммутации получены законы, характеризующие напряжение и ток при разряде конденсатора:
где U- напряжение заряженного конденсатора до начала разряда.
Разрядные напряжения и ток равны их свободным составляющим, т.к напряжение и ток установившегося режима после разряда равны 0 (uc уст =0, iуст =0).
Длительность разряда конденсатора:
t=5τ=0,5ּ5=2,5 с.
Вычисляем значения напряжения конденсатора при его разряде для, значений времени
t=0, τ, 2τ, 3τ, 4τ, 5τ.
t=0, В;