Курсовая работа: Математическое моделирование и оптимизация системы массового обслуживания
ВВЕДЕНИЕ
ПОСТАНОВКА ЗАДАЧИ
РЕШЕНИЕ ЗАДАЧИ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. [1]
Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. [1]
Задача теории массового обслуживания – установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.), от входных показателей (количества каналов в системе, параметров входящего потока заявок и т.д.). Результирующими показателями или интересующими нас характеристиками СМО являются – показатели эффективности СМО, которые описывают, способна ли данная система справляться с потоком заявок. [1]
Системы массового обслуживания могут быть одноканальными или многоканальными.
Заметим, что за последние годы область применения математических методов теории массового обслуживания непрерывно расширяется и все больше выходит за пределы задач, связанных с "обслуживающими организациями" в буквальном смысле слова. Как своеобразные системы массового обслуживания могут рассматриваться: электронные цифровые вычислительные машины; системы сбора и обработки информации; автоматизированные производственные цехи, поточные линии; транспортные системы; системы противовоздушной обороны и т. д. [2]
Задачи массового обслуживания условно делят на задачи анализа и задачи синтеза - оптимизации систем массового обслуживания. Первые предполагают определение основных параметров функционирования системы массового обслуживания при неизменных, наперед заданных исходных характеристиках: структура системы, дисциплина обслуживания, потоки требований и законы распределения времени на их обслуживание. Вторые направлены на поиск оптимальных параметров систем массового обслуживания. [4]
Оптимизационные модели широко используются в экономике и технике. Среди них задачи подбора сбалансированного рациона питания, оптимизации ассортимента продукции, транспортная задача и пр., и пр.
Задача оптимизации – задача выбора из множества возможных вариантов наилучшего, оптимального. Оптимизация – от латинского слова «оптимус» - наилучший – поиск наилучшего, поиск наилучшего проектного изделия. [4]
Каждая задача оптимизации обязательно должна иметь три компоненты:
неизвестные (что ищем, то есть, план);
ограничение на неизвестные (область поиска);
целевая функция (цель, для которой ищем экстремум).
Математическая модель, та которая определена с помощью математических формализмов. Математическая модель не является точной, а является идеализацией.
Определение параметров состояния - задача моделирования. Определение переменных проектирования – задачи проектирования или задачи оптимизации. [3]
Выявление основных особенностей, взаимосвязей и количественных закономерностей
Функционирование любой системы массового обслуживания можно представить через все возможные состояния ее и интенсивность перехода из одного состояния в другое. Основными параметрами функционирования СМО являются вероятности ее состояния, то есть возможности наличия n требований в системе - Рn .
Важным параметром функционирования СМО является также среднее число требований, находящихся в системе Nsyst , то есть в очереди на обслуживание, а также средняя длина очереди Noch . Исходными параметрами, характеризующими систему массового обслуживания, являются: число каналов обслуживания - n; число требований - m; интенсивность поступления одного требования на обслуживание - λ, то есть число поступлений требований в единицу времени; интенсивность обслуживания требований - μ.
Многоканальная СМО с отказами
Рассмотрим n-канальную СМО с отказами. Будем нумеровать состояния системы по числу занятых каналов (или, что в данном случае то же, по числу заявок, связанных с системой). Состояния будут:
S0 - все каналы свободны, S1 - занят ровно один канал, остальные свободны,
Sk - заняты ровно k каналов, остальные свободны, Sn - заняты все n каналов.
Граф состояний СМО представлен на рис.1. Разместим граф, т.е. проставим у стрелок интенсивности соответствующих потоков событий. По стрелкам слева на право систему переводит один и тот же поток - поток заявок с интенсивностью l.
Рис.1
Если система находиться в состоянии Sk (занято k каналов) и пришла новая заявка, система переходит (перескакивает) в состояние Sk+1
Определим интенсивности потоков событий, переводящих систему по стрелкам справа налево.
Пусть система находиться в состоянии S1 (занят один канал). Тогда, как только закончиться обслуживание заявки, занимающей этот канал, система перейдет в S0 ; значит, поток событий, переводящий систему по стрелке S1 ® S0 , Имеет интенсивность m. Очевидно, если обслуживанием занято два канала, а не один, поток обслуживаний, переводящий систему по стрелке S2 ® S1 , будет вдвое интенсивнее (2m); если занято k каналов - в k раз интенсивнее (km). Проставим соответствующие интенсивности у стрелок, ведущих справа налево.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--