Курсовая работа: Математическое моделирование и оптимизация системы массового обслуживания

Пользуясь общими правилами, можно составить уравнения Колмогорова для вероятностей состояний:

(1)

Уравнения (1) называются уравнениями Эрланга. Естественными начальными условиями для их решения являются:

p0 (0)=1; p1 (0)=p2 (0)=...=pn (0)=0 (в начальный момент система свободна).

Интегрирование системы уравнений (1) в аналитическом виде довольно сложно; на практике такие системы дифференциальных уравнений обычно решаются численно, на ЭВМ. Такое решение дает нам все вероятности состояний p0 (t), p1 (t),..., pn (t) как функции времени.

Естественно, нас больше всего будут интересовать предельные вероятности состояний p0 , p1 ,..., pk ,..., pn , характеризующие установившийся режим работы СМО (при t ® ¥). Для нахождения предельных вероятностей воспользуемся уже готовым решением задачи, полученным для схемы гибели и размножения. Согласно этому решению,

(2)

В этих формулах интенсивность потока заявок l и интенсивность потока обслуживаний (для одного канала) m не фигурируют по отдельности, а входят только своим отношением l /m. Обозначим это отношение l /m=r и будем называть величину r "приведенной интенсивностью" потока заявок. Физический смысл ее таков: величина r представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом этого обозначения, формулы (2) примут вид:

(3)

Формулы (3) называются формулами Эрланга. Они выражают предельные вероятности всех состояний системы в зависимости от параметров l, m и n (l - интенсивность потока заявок, m - интенсивность обслуживания, n - число каналов СМО).

Зная все вероятности состояний p0 , p1 ,..., pk ,..., pn , можно найти характеристики эффективности СМО: относительную пропускную способность q, абсолютную пропускную способность А и вероятность отказа Pотк .

Действительно, заявка получает отказ, если приходит в момент, когда все n каналов заняты. Вероятность этого равна

(4)

Вероятность того, что заявка будет принята к обслуживанию (она же относительная пропускная способность q) дополняет Pотк до единицы:

(5)

Абсолютная пропускная способность:

(6)

Одной из важных характеристик СМО с отказами является среднее число занятых каналов (в данном случае оно совпадает со средним числом заявок, находящихся в системе). Обозначим это среднее число k- .

Величину k- можно вычислить непосредственно через вероятности p0 , p1 ,..., pn по формуле:

(7)

как математическое ожидание дискретной случайной величины, принимающей значения 0,1,...,n с вероятностями p0 , p1 ,..., pn . однако значительно проще выразить среднее число занятых каналов через абсолютную пропускную способность А, которую мы уже знаем. Действительно, А есть не что иное, как среднее число заявок, обслуживаемых в единицу времени; один занятый канал обслуживает в среднем за единицу времени m заявок; среднее число занятых каналов получится делением А на m:

или, переходя к обозначению l/m = r,

(8)

[5], [6].

Цель данной работы заключается в разработке модели, имитирующей работу поста ГИБДД. Такая задача была поставлена для того, чтобы выявить эффективность работы системы обслуживания поста ГИБДД для дальнейшей ее оптимизации.

В данной работе предлагается к использованию одна из методик, которая предполагает разделение процесса моделирования на две части. Первая часть –обеспечивает нахождение параметров работы исходной задачи. Вторая часть – производится оптимизация определенных параметров при неизменных остальных параметров в таблицах MS Excel. Строятся графики функций. Производится их анализ и делаются выводы.

Рассмотрим подробнее математическую модель работы поста ГИБДД как системы массового обслуживания. Для решения задачи было принято допущение, что очередь клиентов ограничена, и, следовательно, данная модель является СМО с ограниченной очередью, где n – количество каналов обслуживания. Также принимаем допущение, что все потоки событий (случайные события) в системе являются Марковскими. Напомним, что случайный процесс, протекающий в системе, называется Марковским, если для любого момента времени t0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t0 и не зависят от того, когда и как система пришла в это состояние.

Поток нарушителей в систему поступают с интенсивностью . Тогда

Вероятность отказа .

Относительная пропускная способность .

Абсолютная пропускная способность .

Среднее число заявок, связанных с системой .

Средняя длина очереди .

Количество, ожидающих в очереди .

Время в очереди .

Время в системе .

К-во Просмотров: 397
Бесплатно скачать Курсовая работа: Математическое моделирование и оптимизация системы массового обслуживания