Курсовая работа: Метод простой итерации для решения систем линейных алгебраических уравнений

Министерство науки и образования РФ

Новосибирский государственный технический университет

Кафедра экономической информатики

Курс: "Численные методы"

Пояснительная записка к курсовой работе на тему

"Метод простой итерации для решения систем линейных алгебраических уравнений"

Факультет: Бизнеса

Преподаватель: Сарычева О. М.

Новосибирск, 2010


Содержание

1. Введение

2. Математическая постановка задачи и описание метода

3. Описание программного обеспечения

3.1 Общие сведения

3.2 Функциональное назначение программы

3.3 Вызов и загрузка программы

3.4 Входные данные

3.5 Выходные данные

3.6 Описание алгоритмов

3.6.1 Программный модуль metod1.m

3.6.2 Программный модуль metod2.m

3.7 Используемые программные и технические средства

4. Описание тестовых задач

5. Анализ результатов счета, выводы

6. Заключение

Приложения

Список литературы


1. Введение

В данной курсовой работе необходимо рассмотреть один из множества существующих итерационных методов - метод простой итерации для решения систем линейных алгебраических уравнений.

Прежде чем говорить о вышеуказанном методе, дадим краткую характеристику вообще итерационным методам.

Итерационные методы дают возможность найти решение системы, как предел бесконечного вычислительного процесса, позволяющего по уже найденным приближениям к решению построить следующее, более точное приближение. Привлекательной чертой таких методов является их самоисправляемость и простота реализации на ЭВМ. Если в точных методах ошибка в вычислениях, когда она не компенсируется случайно другими ошибками, неизбежно ведет к ошибкам в результате, то в случае сходящегося итерационного процесса ошибка в каком-то приближении исправляется в последующих вычислениях, и такое исправление требует, как правило, только нескольких лишних шагов единообразных вычислений. Итерационный метод, для того чтобы начать по нему вычисления, требует знания одного или нескольких начальных приближений к решению.

Условия и скорость сходимости каждого итерационного процесса существенно зависят от свойств уравнений, то есть от свойств матрицы системы, и от выбора начальных приближений.


2. Математическая постановка задачи и описание метода

2.1 Математическая постановка задачи

Исследовать метод простой итерации для решения систем линейных алгебраических уравнений, а именно: влияние способа перехода от системы F(x)=x к системе x=(x) на точность полученного решения, скорость сходимости метода, время счета, число операций.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 399
Бесплатно скачать Курсовая работа: Метод простой итерации для решения систем линейных алгебраических уравнений