Курсовая работа: Методы расчета линейных электрических цепей при импульсном воздействии. Спектральный анализ сигналов

I.


{интегрируем по частям, как в пункте I}=

II.

В результате получаем закон изменения искомой величины при подаче на вход цепи импульса заданной формы:

Расчет и построение графика спектральной плотности прямоугольного импульса

Основой спектрального анализа является то, что любой непрерывный сигнал можно представить как периодический с периодом . Энергия сигнала при этом не меняется. То есть каждая амплитуда гармонического ряда Фурье начинает убывать с ростом числа гармоник. Расстояние между отельными гармониками при увеличении их количества уменьшается. Но энергия спектра и его форма сохраняются.

Аналитическое описание в виде ряда Фурье преобразуется в аналитическое выражение в виде интеграла Фурье:

По условию дан одиночный импульс амплитудой E и длительностью tи =0,2мс:

Чтобы найти спектральную характеристику данного воздействия, представим с учетом принципа наложения его в виде двух сигналов, используя единичную функцию:


(по теореме о запаздывание оригинала)

Полученная величина является спектральной плотностью сигнала f(t). Физическую ценность имеет модуль спектральной плотности сигнала , который согласно теореме Релея (правило Парсиваля) характеризует распределение энергии в спектре сигнала.


90℅ энергии сигнала сосредоточено в диапазоне частот первого лепестка графика, то есть в пределах от до . В данном случае это соответствует изменению частоты от до .

Расчет и построение графика спектральной плотности искомой переменной

Используя определение передаточной функции, можно записать, что . Заменив в этом равенстве оператор р на , получим формулу для нахождения спектральной плотности искомой величины:

Ранее было определено, что . Н(p) также была найдена.

К-во Просмотров: 285
Бесплатно скачать Курсовая работа: Методы расчета линейных электрических цепей при импульсном воздействии. Спектральный анализ сигналов